{"title":"Shape and Size Dependent Antimicrobial and Anti-biofilm Properties of Functionalized MoS<sub>2</sub>.","authors":"Navjot Kaur, Mrinmoy De","doi":"10.1021/acsinfecdis.4c00860","DOIUrl":null,"url":null,"abstract":"<p><p>Bacterial resistance, accelerated by the misuse of antibiotics, remains a critical concern for public health, promoting an ongoing exploration for cost-effective and safe antibacterial agents. Recently, there has been significant focus on various nanomaterials for the development of alternative antibiotics. Among these, molybdenum disulfide (MoS<sub>2</sub>) has gained attention due to its unique chemical, physical, and electronic properties, as well as its semiconducting nature, biocompatibility, and colloidal stability, positioning it as a promising candidate for biomedical research. The impact of the shape and size of MoS<sub>2</sub> nanomaterials on the antibacterial activity remains largely unexplored. In this study, we investigated the effect of the shape and size of MoS<sub>2</sub> nanomaterials, such as quantum dots, nanoflowers, and nanosheets, on antimicrobial and anti-biofilm activity. As we had established earlier, functionalization with positively charged thiol ligands can enhance colloidal stability, biocompatibility, and antibacterial efficacy; we functionalized all targeted nanomaterials. Our results revealed that functionalized MoS<sub>2</sub> quantum dots (F-MQDs) exhibited superior activity compared to functionalized MoS<sub>2</sub> nanoflowers (F-MNFs) and functionalized MoS<sub>2</sub> nanosheets (F-MNSs) against <i>Staphylococcus aureus</i> (SA), both drug-resistant (methicillin) and nonresistant strains. We observed very low minimum inhibitory concentration (MIC, 30 ng/mL) for F-MQDs. The observed trend in antibacterial efficacy was as follows: F-MQDs > F-MNFs ≥ F-MNSs. We explored the relevant mechanism related to the antibacterial activity where the balance between membrane depolarization and internalization plays the determining role. Furthermore, F-MQDs show enhanced anti-biofilm activity compared to F-MNFs and F-MNSs against mature MRSA biofilms. Due to the superior antibacterial and anti-biofilm activity of F-MQDs, we extended their application to wound healing. This study will help us to develop other appropriate surface modified nanomaterials for antibacterial and anti-biofilm activity for further applications such as antibacterial coatings, water disinfection, and wound healing.</p>","PeriodicalId":17,"journal":{"name":"ACS Infectious Diseases","volume":" ","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Infectious Diseases","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acsinfecdis.4c00860","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Bacterial resistance, accelerated by the misuse of antibiotics, remains a critical concern for public health, promoting an ongoing exploration for cost-effective and safe antibacterial agents. Recently, there has been significant focus on various nanomaterials for the development of alternative antibiotics. Among these, molybdenum disulfide (MoS2) has gained attention due to its unique chemical, physical, and electronic properties, as well as its semiconducting nature, biocompatibility, and colloidal stability, positioning it as a promising candidate for biomedical research. The impact of the shape and size of MoS2 nanomaterials on the antibacterial activity remains largely unexplored. In this study, we investigated the effect of the shape and size of MoS2 nanomaterials, such as quantum dots, nanoflowers, and nanosheets, on antimicrobial and anti-biofilm activity. As we had established earlier, functionalization with positively charged thiol ligands can enhance colloidal stability, biocompatibility, and antibacterial efficacy; we functionalized all targeted nanomaterials. Our results revealed that functionalized MoS2 quantum dots (F-MQDs) exhibited superior activity compared to functionalized MoS2 nanoflowers (F-MNFs) and functionalized MoS2 nanosheets (F-MNSs) against Staphylococcus aureus (SA), both drug-resistant (methicillin) and nonresistant strains. We observed very low minimum inhibitory concentration (MIC, 30 ng/mL) for F-MQDs. The observed trend in antibacterial efficacy was as follows: F-MQDs > F-MNFs ≥ F-MNSs. We explored the relevant mechanism related to the antibacterial activity where the balance between membrane depolarization and internalization plays the determining role. Furthermore, F-MQDs show enhanced anti-biofilm activity compared to F-MNFs and F-MNSs against mature MRSA biofilms. Due to the superior antibacterial and anti-biofilm activity of F-MQDs, we extended their application to wound healing. This study will help us to develop other appropriate surface modified nanomaterials for antibacterial and anti-biofilm activity for further applications such as antibacterial coatings, water disinfection, and wound healing.
期刊介绍:
ACS Infectious Diseases will be the first journal to highlight chemistry and its role in this multidisciplinary and collaborative research area. The journal will cover a diverse array of topics including, but not limited to:
* Discovery and development of new antimicrobial agents — identified through target- or phenotypic-based approaches as well as compounds that induce synergy with antimicrobials.
* Characterization and validation of drug target or pathways — use of single target and genome-wide knockdown and knockouts, biochemical studies, structural biology, new technologies to facilitate characterization and prioritization of potential drug targets.
* Mechanism of drug resistance — fundamental research that advances our understanding of resistance; strategies to prevent resistance.
* Mechanisms of action — use of genetic, metabolomic, and activity- and affinity-based protein profiling to elucidate the mechanism of action of clinical and experimental antimicrobial agents.
* Host-pathogen interactions — tools for studying host-pathogen interactions, cellular biochemistry of hosts and pathogens, and molecular interactions of pathogens with host microbiota.
* Small molecule vaccine adjuvants for infectious disease.
* Viral and bacterial biochemistry and molecular biology.