Renier H P van Neer, Patricia K Dranchak, Mahesh Aitha, Lijun Liu, Emma K Carlson, Isabella E Jacobsen, Kevin Battaile, Yuhong Fang, Dingyin Tao, Ganesha Rai, Janak Padia, Scott Lovell, Hiroaki Suga, James Inglese
{"title":"Active- and Allosteric-Site Cyclic Peptide Inhibitors of Secreted <i>M. tuberculosis</i> Chorismate Mutase.","authors":"Renier H P van Neer, Patricia K Dranchak, Mahesh Aitha, Lijun Liu, Emma K Carlson, Isabella E Jacobsen, Kevin Battaile, Yuhong Fang, Dingyin Tao, Ganesha Rai, Janak Padia, Scott Lovell, Hiroaki Suga, James Inglese","doi":"10.1021/acsinfecdis.4c00798","DOIUrl":null,"url":null,"abstract":"<p><p>The secreted Chorismate mutase enzyme of <i>Mycobacterium tuberculosis</i> (*<i>Mtb</i>CM) is an underexplored potential target for the development of new antitubercular agents that are increasingly needed as antibiotic resistance rises in prevalence. As an enzyme suspected to be involved in virulence and host-pathogen interactions, disruption of its function could circumvent the difficulty of treating tuberculosis-infected granulomas. Drug development, however, is limited by novel ligand discovery. Currently, *<i>Mtb</i>CM activity is measured by using a low throughput acid/base-mediated product derivatization absorbance assay. Here, we utilized an RNA-display affinity selection approach enabled by the Random Peptides Integrated Discovery (RaPID) system to screen a vast library of macrocyclic peptides (MCP) for novel *<i>Mtb</i>CM ligands. Peptides identified from the RaPID selection, and analogs thereof identified by analyzing the selection population dynamics, produced a new class of *<i>Mtb</i>CM inhibiting MCPs. Among these were two noteworthy \"chorismides\", whose binding modes were elucidated by X-ray crystallography. Both were potent inhibitors of the CM enzyme activity. One was identified as an allosteric binding peptide revealing a novel inhibition approach, while the other is an active-site binding peptide that when conjugated to a fluorescent probe allowed for the development of a series of alternative fluorescence-based ligand-displacement assays that can be utilized for the assessment of potential *<i>Mtb</i>CM inhibitors.</p>","PeriodicalId":17,"journal":{"name":"ACS Infectious Diseases","volume":" ","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Infectious Diseases","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acsinfecdis.4c00798","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
The secreted Chorismate mutase enzyme of Mycobacterium tuberculosis (*MtbCM) is an underexplored potential target for the development of new antitubercular agents that are increasingly needed as antibiotic resistance rises in prevalence. As an enzyme suspected to be involved in virulence and host-pathogen interactions, disruption of its function could circumvent the difficulty of treating tuberculosis-infected granulomas. Drug development, however, is limited by novel ligand discovery. Currently, *MtbCM activity is measured by using a low throughput acid/base-mediated product derivatization absorbance assay. Here, we utilized an RNA-display affinity selection approach enabled by the Random Peptides Integrated Discovery (RaPID) system to screen a vast library of macrocyclic peptides (MCP) for novel *MtbCM ligands. Peptides identified from the RaPID selection, and analogs thereof identified by analyzing the selection population dynamics, produced a new class of *MtbCM inhibiting MCPs. Among these were two noteworthy "chorismides", whose binding modes were elucidated by X-ray crystallography. Both were potent inhibitors of the CM enzyme activity. One was identified as an allosteric binding peptide revealing a novel inhibition approach, while the other is an active-site binding peptide that when conjugated to a fluorescent probe allowed for the development of a series of alternative fluorescence-based ligand-displacement assays that can be utilized for the assessment of potential *MtbCM inhibitors.
期刊介绍:
ACS Infectious Diseases will be the first journal to highlight chemistry and its role in this multidisciplinary and collaborative research area. The journal will cover a diverse array of topics including, but not limited to:
* Discovery and development of new antimicrobial agents — identified through target- or phenotypic-based approaches as well as compounds that induce synergy with antimicrobials.
* Characterization and validation of drug target or pathways — use of single target and genome-wide knockdown and knockouts, biochemical studies, structural biology, new technologies to facilitate characterization and prioritization of potential drug targets.
* Mechanism of drug resistance — fundamental research that advances our understanding of resistance; strategies to prevent resistance.
* Mechanisms of action — use of genetic, metabolomic, and activity- and affinity-based protein profiling to elucidate the mechanism of action of clinical and experimental antimicrobial agents.
* Host-pathogen interactions — tools for studying host-pathogen interactions, cellular biochemistry of hosts and pathogens, and molecular interactions of pathogens with host microbiota.
* Small molecule vaccine adjuvants for infectious disease.
* Viral and bacterial biochemistry and molecular biology.