Human Monocyte-Derived Macrophages Demonstrate Distinct Responses to Ambient Particulate Matter in a Polarization State- and Particle Seasonality-Specific Manner.

IF 3.7 3区 医学 Q2 CHEMISTRY, MEDICINAL Chemical Research in Toxicology Pub Date : 2024-12-20 DOI:10.1021/acs.chemrestox.4c00291
Timothy R Smyth, Stephanie Brocke, Yong Ho Kim, Cara Christianson, Kasey D Kovalcik, Joseph Patrick Pancras, Michael D Hays, Weidong Wu, Zhen An, Ilona Jaspers
{"title":"Human Monocyte-Derived Macrophages Demonstrate Distinct Responses to Ambient Particulate Matter in a Polarization State- and Particle Seasonality-Specific Manner.","authors":"Timothy R Smyth, Stephanie Brocke, Yong Ho Kim, Cara Christianson, Kasey D Kovalcik, Joseph Patrick Pancras, Michael D Hays, Weidong Wu, Zhen An, Ilona Jaspers","doi":"10.1021/acs.chemrestox.4c00291","DOIUrl":null,"url":null,"abstract":"<p><p>Macrophages are professional phagocytic immune cells that, following activation, polarize on a spectrum between the proinflammatory M1 and the proresolution M2 states. Macrophages have further been demonstrated to retain plasticity, allowing for the reprogramming of their polarization states following exposure to new stimuli. Particulate matter (PM) has been repeatedly shown to modify macrophage function and polarization while also inducing worsening respiratory infection morbidity and mortality. However, limited work has considered the impact of the initial macrophage polarization state on subsequent responses to PM exposure. PM composition can demonstrate seasonality-specific compositional changes based on differences in seasonal weather patterns and energy needs, introducing the need to consider the seasonality-specific effects of airborne PM when investigating its impact on human health. This study sought to determine the impact of airborne PM collected during different seasons of the year in Xinxiang, China, on macrophage function in a polarization state-dependent manner. Macrophages were differentiated using the macrophage colony-stimulating factor (M-CSF) on CD14+CD16- monocytes isolated from the blood of healthy human volunteers. The resulting macrophages were polarized into indicated states using well-characterized polarization methods and assessed for phagocytic function, bioenergetic properties, and secretory profile following exposure to PM collected during a single day during each season of the year. Macrophages demonstrated clear polarization state-dependent phagocytic, bioenergetic, and secretory properties at the baseline and following PM exposure. Specific PM seasonality had a minimal impact on phagocytic function and a minor effect on bioenergetic properties but had clear impacts on the secretory profile as demonstrated by the enriched secretion of well-characterized mediator clusters by particle season. Together, these data suggest that both particle seasonality and macrophage polarization state must be considered when investigating the impact of PM on macrophage function. These factors may contribute to the negative outcomes linked to PM exposure during respiratory infections.</p>","PeriodicalId":31,"journal":{"name":"Chemical Research in Toxicology","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Research in Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.chemrestox.4c00291","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Macrophages are professional phagocytic immune cells that, following activation, polarize on a spectrum between the proinflammatory M1 and the proresolution M2 states. Macrophages have further been demonstrated to retain plasticity, allowing for the reprogramming of their polarization states following exposure to new stimuli. Particulate matter (PM) has been repeatedly shown to modify macrophage function and polarization while also inducing worsening respiratory infection morbidity and mortality. However, limited work has considered the impact of the initial macrophage polarization state on subsequent responses to PM exposure. PM composition can demonstrate seasonality-specific compositional changes based on differences in seasonal weather patterns and energy needs, introducing the need to consider the seasonality-specific effects of airborne PM when investigating its impact on human health. This study sought to determine the impact of airborne PM collected during different seasons of the year in Xinxiang, China, on macrophage function in a polarization state-dependent manner. Macrophages were differentiated using the macrophage colony-stimulating factor (M-CSF) on CD14+CD16- monocytes isolated from the blood of healthy human volunteers. The resulting macrophages were polarized into indicated states using well-characterized polarization methods and assessed for phagocytic function, bioenergetic properties, and secretory profile following exposure to PM collected during a single day during each season of the year. Macrophages demonstrated clear polarization state-dependent phagocytic, bioenergetic, and secretory properties at the baseline and following PM exposure. Specific PM seasonality had a minimal impact on phagocytic function and a minor effect on bioenergetic properties but had clear impacts on the secretory profile as demonstrated by the enriched secretion of well-characterized mediator clusters by particle season. Together, these data suggest that both particle seasonality and macrophage polarization state must be considered when investigating the impact of PM on macrophage function. These factors may contribute to the negative outcomes linked to PM exposure during respiratory infections.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.90
自引率
7.30%
发文量
215
审稿时长
3.5 months
期刊介绍: Chemical Research in Toxicology publishes Articles, Rapid Reports, Chemical Profiles, Reviews, Perspectives, Letters to the Editor, and ToxWatch on a wide range of topics in Toxicology that inform a chemical and molecular understanding and capacity to predict biological outcomes on the basis of structures and processes. The overarching goal of activities reported in the Journal are to provide knowledge and innovative approaches needed to promote intelligent solutions for human safety and ecosystem preservation. The journal emphasizes insight concerning mechanisms of toxicity over phenomenological observations. It upholds rigorous chemical, physical and mathematical standards for characterization and application of modern techniques.
期刊最新文献
Oxymatrine Inhibits Liver Cancer Progression by Regulating SIRT1/YY1/GPX4 Axis-Mediated Ferroptosis. A Photoinducible DNA Cross-Linking Agent with Potent Cytotoxicity and Selectivity Toward Triple-Negative Breast Cancer Cell Line. Repurposing the Antihypertensive Agent Hydralazine As an Inhibitor of the Base Excision Repair Enzyme APE1. Goniodomic Acid, a Transient Oxirane Intermediate in the Conversion of the Macrolide Algal Toxin Goniodomin A to Seco Acids. Human Monocyte-Derived Macrophages Demonstrate Distinct Responses to Ambient Particulate Matter in a Polarization State- and Particle Seasonality-Specific Manner.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1