Effective organic matter removal via bio-adsorption prior to anammox process and utilization of carbon-rich sludge.

IF 8 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Journal of Environmental Management Pub Date : 2024-12-18 DOI:10.1016/j.jenvman.2024.123777
Kunming Fu, Wenbing Yang, Sibo Fu, Yihao Bian, Aotong Huo, Teng Guan, Xueqin Li, Ruibao Zhang, Hao Jing
{"title":"Effective organic matter removal via bio-adsorption prior to anammox process and utilization of carbon-rich sludge.","authors":"Kunming Fu, Wenbing Yang, Sibo Fu, Yihao Bian, Aotong Huo, Teng Guan, Xueqin Li, Ruibao Zhang, Hao Jing","doi":"10.1016/j.jenvman.2024.123777","DOIUrl":null,"url":null,"abstract":"<p><p>Excessive organic matter in the anaerobic ammonia oxidation (Anammox) leads to the growth of a large number of heterotrophic bacteria, which disrupts the anaerobic ammonia oxidation. The adsorption-anaerobic ammonia oxidation process can effectively reduce excessive organic matter, capturing it instead of consuming it, which is a sustainable development technology. In this study, utilizing the excellent adsorption performance of aerobic granular sludge (AGS), an adsorption-regeneration process was employed to remove organic matter at the front end of the Anammox process through bio-adsorption in an artificial simulated domestic sewage environment, and it was successfully used for denitrification. Stirring rate is a key factor affecting sludge granulation. As a parallel experiment of sludge granulation, two Sequencing Batch Reactors (SBRs) (R1 and R2) were operated simultaneously at different stirring rates. After 153 days, the particle size of the two reactors was analyzed, revealing that the proportion of particles larger than 200 μm was over 50%, and granular sludge was successfully formed in both reactors. Long-term operational results indicate that at a temperature of 16.5 ± 1 °C, varying initial pH levels (6.5, 6.7, 7.2, and 8.5) significantly affect the removal efficiency of chemical oxygen demand (COD). COD is rapidly adsorbed and removed within a short period. Among the tested initial pH values, a pH of 6.7 yielded the best total chemical oxygen demand (tCOD) removal efficiency, achieving up to 95%. Additionally, the study examined the effects of different carbon sources on denitrification, revealing that under carbon-rich conditions, the denitrification rate was highest, reaching 1.44 mg N/(g VSS·h). Compared to endogenous denitrification, the denitrification rate increased by 40%, and the nitrate (NO₃⁻-N) removal efficiency reached 100%.</p>","PeriodicalId":356,"journal":{"name":"Journal of Environmental Management","volume":"373 ","pages":"123777"},"PeriodicalIF":8.0000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Management","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jenvman.2024.123777","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Excessive organic matter in the anaerobic ammonia oxidation (Anammox) leads to the growth of a large number of heterotrophic bacteria, which disrupts the anaerobic ammonia oxidation. The adsorption-anaerobic ammonia oxidation process can effectively reduce excessive organic matter, capturing it instead of consuming it, which is a sustainable development technology. In this study, utilizing the excellent adsorption performance of aerobic granular sludge (AGS), an adsorption-regeneration process was employed to remove organic matter at the front end of the Anammox process through bio-adsorption in an artificial simulated domestic sewage environment, and it was successfully used for denitrification. Stirring rate is a key factor affecting sludge granulation. As a parallel experiment of sludge granulation, two Sequencing Batch Reactors (SBRs) (R1 and R2) were operated simultaneously at different stirring rates. After 153 days, the particle size of the two reactors was analyzed, revealing that the proportion of particles larger than 200 μm was over 50%, and granular sludge was successfully formed in both reactors. Long-term operational results indicate that at a temperature of 16.5 ± 1 °C, varying initial pH levels (6.5, 6.7, 7.2, and 8.5) significantly affect the removal efficiency of chemical oxygen demand (COD). COD is rapidly adsorbed and removed within a short period. Among the tested initial pH values, a pH of 6.7 yielded the best total chemical oxygen demand (tCOD) removal efficiency, achieving up to 95%. Additionally, the study examined the effects of different carbon sources on denitrification, revealing that under carbon-rich conditions, the denitrification rate was highest, reaching 1.44 mg N/(g VSS·h). Compared to endogenous denitrification, the denitrification rate increased by 40%, and the nitrate (NO₃⁻-N) removal efficiency reached 100%.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Environmental Management
Journal of Environmental Management 环境科学-环境科学
CiteScore
13.70
自引率
5.70%
发文量
2477
审稿时长
84 days
期刊介绍: The Journal of Environmental Management is a journal for the publication of peer reviewed, original research for all aspects of management and the managed use of the environment, both natural and man-made.Critical review articles are also welcome; submission of these is strongly encouraged.
期刊最新文献
Effective organic matter removal via bio-adsorption prior to anammox process and utilization of carbon-rich sludge. Enhanced Pb immobilization by CaO/MgO-modified soybean residue (okara) in phosphate mining wasteland soil: Mechanism and microbial community structure. Ensemble habitat suitability model predicts Suaeda salsa distribution and resilience to extreme climate events. FeS-based nanocomposites: A promising approach for sustainable environmental remediation - Focus on adsorption and photocatalysis - A review. Corrigendum to 'Managing semi-arid oak forests (Quercus brantii Lindl.): Mature oak trees of different dimensions create contrasted microhabitats influencing seedling quality' [J. Environ. Manag. 304 (2022) 114-269/Article Number].
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1