Hanghang Liu, Menglong Hua, Yaobao Han, Li Yang, Zhongshi Huang, Jiabing Ran, Huimin Wang, Feng Ren, Changying Yang, Zhen Li
{"title":"Hijacking endogenous iron to amplify lysosomal-mitochondrial cascade damage for boosting anti-tumor immunotherapy.","authors":"Hanghang Liu, Menglong Hua, Yaobao Han, Li Yang, Zhongshi Huang, Jiabing Ran, Huimin Wang, Feng Ren, Changying Yang, Zhen Li","doi":"10.1016/j.biomaterials.2024.122983","DOIUrl":null,"url":null,"abstract":"<p><p>The cross-talk between lysosomes and mitochondria is crucial for keeping intracellular homeostasis and metabolic function, providing a promising approach for tumor therapy. Herein, we employed polyvinylpyrrolidone (PVP)-modified Cu-gallic acid (CuGA) complex nano-boosters for amplifying lysosomes-mitochondria cascaded damage, and thereby effectively inducing cuproptosis and pyroptosis of breast tumor cells to boost anti-tumor immunotherapy. The CuGA nano-boosters could hijack lysosomal iron to form a bimetallic catalyst Cu(Fe)GA in situ through ion-exchange reaction, and cause the release of Cu<sup>+/2+</sup> and metal ion dysregulation (i.e., Fe<sup>2+/3+</sup>, Cu<sup>+/2+</sup>, Ca<sup>2+</sup>) in tumor cells. The released Cu<sup>+</sup> further led to metabolic disturbances of mitochondrial tricarboxylic acid (TCA) cycle (i.e., cuproptosis), and ultimately led to caspase-3/GSDME-dependent pyroptosis. In vivo results revealed that this lysosomal-mitochondrial cascade damage strategy not only induced tumor cell death, but also activated the immune response, thereby effectively suppressed tumor metastasis. This research provides a novel approach of triggering cascade damage to subcellular organelles for boosting tumor immunotherapy by disrupting metal ion intracellular homeostasis.</p>","PeriodicalId":254,"journal":{"name":"Biomaterials","volume":"316 ","pages":"122983"},"PeriodicalIF":12.8000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.biomaterials.2024.122983","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/4 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The cross-talk between lysosomes and mitochondria is crucial for keeping intracellular homeostasis and metabolic function, providing a promising approach for tumor therapy. Herein, we employed polyvinylpyrrolidone (PVP)-modified Cu-gallic acid (CuGA) complex nano-boosters for amplifying lysosomes-mitochondria cascaded damage, and thereby effectively inducing cuproptosis and pyroptosis of breast tumor cells to boost anti-tumor immunotherapy. The CuGA nano-boosters could hijack lysosomal iron to form a bimetallic catalyst Cu(Fe)GA in situ through ion-exchange reaction, and cause the release of Cu+/2+ and metal ion dysregulation (i.e., Fe2+/3+, Cu+/2+, Ca2+) in tumor cells. The released Cu+ further led to metabolic disturbances of mitochondrial tricarboxylic acid (TCA) cycle (i.e., cuproptosis), and ultimately led to caspase-3/GSDME-dependent pyroptosis. In vivo results revealed that this lysosomal-mitochondrial cascade damage strategy not only induced tumor cell death, but also activated the immune response, thereby effectively suppressed tumor metastasis. This research provides a novel approach of triggering cascade damage to subcellular organelles for boosting tumor immunotherapy by disrupting metal ion intracellular homeostasis.
期刊介绍:
Biomaterials is an international journal covering the science and clinical application of biomaterials. A biomaterial is now defined as a substance that has been engineered to take a form which, alone or as part of a complex system, is used to direct, by control of interactions with components of living systems, the course of any therapeutic or diagnostic procedure. It is the aim of the journal to provide a peer-reviewed forum for the publication of original papers and authoritative review and opinion papers dealing with the most important issues facing the use of biomaterials in clinical practice. The scope of the journal covers the wide range of physical, biological and chemical sciences that underpin the design of biomaterials and the clinical disciplines in which they are used. These sciences include polymer synthesis and characterization, drug and gene vector design, the biology of the host response, immunology and toxicology and self assembly at the nanoscale. Clinical applications include the therapies of medical technology and regenerative medicine in all clinical disciplines, and diagnostic systems that reply on innovative contrast and sensing agents. The journal is relevant to areas such as cancer diagnosis and therapy, implantable devices, drug delivery systems, gene vectors, bionanotechnology and tissue engineering.