Generating 3D brain tumor regions in MRI using vector-quantization Generative Adversarial Networks.

IF 7 2区 医学 Q1 BIOLOGY Computers in biology and medicine Pub Date : 2024-12-18 DOI:10.1016/j.compbiomed.2024.109502
Meng Zhou, Matthias W Wagner, Uri Tabori, Cynthia Hawkins, Birgit B Ertl-Wagner, Farzad Khalvati
{"title":"Generating 3D brain tumor regions in MRI using vector-quantization Generative Adversarial Networks.","authors":"Meng Zhou, Matthias W Wagner, Uri Tabori, Cynthia Hawkins, Birgit B Ertl-Wagner, Farzad Khalvati","doi":"10.1016/j.compbiomed.2024.109502","DOIUrl":null,"url":null,"abstract":"<p><p>Medical image analysis has significantly benefited from advancements in deep learning, particularly in the application of Generative Adversarial Networks (GANs) for generating realistic and diverse images that can augment training datasets. The common GAN-based approach is to generate entire image volumes, rather than the region of interest (ROI). Research on deep learning-based brain tumor classification using MRI has shown that it is easier to classify the tumor ROIs compared to the entire image volumes. In this work, we present a novel framework that uses vector-quantization GAN and a transformer incorporating masked token modeling to generate high-resolution and diverse 3D brain tumor ROIs that can be used as additional data for tumor ROI classification. We apply our method to two imbalanced datasets where we augment the minority class: (1) low-grade glioma (LGG) ROIs from the Multimodal Brain Tumor Segmentation Challenge (BraTS) 2019 dataset; (2) BRAF V600E Mutation genetic marker tumor ROIs from the internal pediatric LGG (pLGG) dataset. We show that the proposed method outperforms various baseline models qualitatively and quantitatively. The generated data was used to balance the data to classify brain tumor types. Our approach demonstrates superior performance, surpassing baseline models by 6.4% in the area under the ROC curve (AUC) on the BraTS 2019 dataset and 4.3% in the AUC on the internal pLGG dataset. The results indicate the generated tumor ROIs can effectively address the imbalanced data problem. Our proposed method has the potential to facilitate an accurate diagnosis of rare brain tumors using MRI scans.</p>","PeriodicalId":10578,"journal":{"name":"Computers in biology and medicine","volume":"185 ","pages":"109502"},"PeriodicalIF":7.0000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in biology and medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.compbiomed.2024.109502","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Medical image analysis has significantly benefited from advancements in deep learning, particularly in the application of Generative Adversarial Networks (GANs) for generating realistic and diverse images that can augment training datasets. The common GAN-based approach is to generate entire image volumes, rather than the region of interest (ROI). Research on deep learning-based brain tumor classification using MRI has shown that it is easier to classify the tumor ROIs compared to the entire image volumes. In this work, we present a novel framework that uses vector-quantization GAN and a transformer incorporating masked token modeling to generate high-resolution and diverse 3D brain tumor ROIs that can be used as additional data for tumor ROI classification. We apply our method to two imbalanced datasets where we augment the minority class: (1) low-grade glioma (LGG) ROIs from the Multimodal Brain Tumor Segmentation Challenge (BraTS) 2019 dataset; (2) BRAF V600E Mutation genetic marker tumor ROIs from the internal pediatric LGG (pLGG) dataset. We show that the proposed method outperforms various baseline models qualitatively and quantitatively. The generated data was used to balance the data to classify brain tumor types. Our approach demonstrates superior performance, surpassing baseline models by 6.4% in the area under the ROC curve (AUC) on the BraTS 2019 dataset and 4.3% in the AUC on the internal pLGG dataset. The results indicate the generated tumor ROIs can effectively address the imbalanced data problem. Our proposed method has the potential to facilitate an accurate diagnosis of rare brain tumors using MRI scans.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Computers in biology and medicine
Computers in biology and medicine 工程技术-工程:生物医学
CiteScore
11.70
自引率
10.40%
发文量
1086
审稿时长
74 days
期刊介绍: Computers in Biology and Medicine is an international forum for sharing groundbreaking advancements in the use of computers in bioscience and medicine. This journal serves as a medium for communicating essential research, instruction, ideas, and information regarding the rapidly evolving field of computer applications in these domains. By encouraging the exchange of knowledge, we aim to facilitate progress and innovation in the utilization of computers in biology and medicine.
期刊最新文献
Comprehensive annotation of mutations in hallmark genes insights into structural and functional implications. Exploring transparency: A comparative analysis of explainable artificial intelligence techniques in retinography images to support the diagnosis of glaucoma. Generating 3D brain tumor regions in MRI using vector-quantization Generative Adversarial Networks. Generating synthetic CT images from unpaired head and neck CBCT images and validating the importance of detailed nasal cavity acquisition through simulations. Graph convolution networks model identifies and quantifies gene and cancer specific transcriptome signatures of cancer driver events.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1