Generating synthetic CT images from unpaired head and neck CBCT images and validating the importance of detailed nasal cavity acquisition through simulations.
Susie Ryu, Jun Hong Kim, Yoon Jeong Choi, Joon Sang Lee
{"title":"Generating synthetic CT images from unpaired head and neck CBCT images and validating the importance of detailed nasal cavity acquisition through simulations.","authors":"Susie Ryu, Jun Hong Kim, Yoon Jeong Choi, Joon Sang Lee","doi":"10.1016/j.compbiomed.2024.109568","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and objective: </strong>Computed tomography (CT) of the head and neck is crucial for diagnosing internal structures. The demand for substituting traditional CT with cone beam CT (CBCT) exists because of its cost-effectiveness and reduced radiation exposure. However, CBCT cannot accurately depict airway shapes owing to image noise. This study proposes a strategy utilizing a cycle-consistent generative adversarial network (cycleGAN) for denoising CBCT images with various loss functions and augmentation strategies, resulting in the generation of denoised synthetic CT (sCT) images. Furthermore, through a rule-based approach, we were able to automatically segment the upper airway in sCT images with high accuracy. Additionally, we conducted an analysis of the impact of finely segmented nasal cavities on airflow using computational fluid dynamics (CFD).</p><p><strong>Methods: </strong>We trained the cycleGAN model using various loss functions and compared the quality of the sCT images generated by each model. We improved the artifact removal performance by incorporating CT images with added Gaussian noise augmentation into the training dataset. We developed a rule-based automatic segmentation methodology using threshold and watershed algorithms to compare the accuracy of airway segmentation for noise-reduced sCT and original CBCT. Furthermore, we validated the significance of the nasal cavity by conducting CFD based on automatically segmented shapes obtained from sCT.</p><p><strong>Result: </strong>The generated sCT images exhibited improved quality, with the mean absolute error decreasing from 161.60 to 100.54, peak signal-to-noise ratio increasing from 22.33 to 28.65, and structural similarity index map increasing from 0.617 to 0.865. Furthermore, by comparing the airway segmentation performances of CBCT and sCT using our proposed automatic rule-based algorithm, the Dice score improved from 0.849 to 0.960. Airway segmentation performance is closely associated with the accuracy of fluid dynamics simulations. Detailed airway segmentation is crucial for altering flow dynamics and contributes significantly to diagnostics.</p><p><strong>Conclusion: </strong>Our deep learning methodology enhances the image quality of CBCT to provide anatomical information to medical professionals and enables precise and accurate biomechanical analysis. This allows clinicians to obtain precise quantitative metrics and facilitates accurate assessment.</p>","PeriodicalId":10578,"journal":{"name":"Computers in biology and medicine","volume":"185 ","pages":"109568"},"PeriodicalIF":7.0000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in biology and medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.compbiomed.2024.109568","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background and objective: Computed tomography (CT) of the head and neck is crucial for diagnosing internal structures. The demand for substituting traditional CT with cone beam CT (CBCT) exists because of its cost-effectiveness and reduced radiation exposure. However, CBCT cannot accurately depict airway shapes owing to image noise. This study proposes a strategy utilizing a cycle-consistent generative adversarial network (cycleGAN) for denoising CBCT images with various loss functions and augmentation strategies, resulting in the generation of denoised synthetic CT (sCT) images. Furthermore, through a rule-based approach, we were able to automatically segment the upper airway in sCT images with high accuracy. Additionally, we conducted an analysis of the impact of finely segmented nasal cavities on airflow using computational fluid dynamics (CFD).
Methods: We trained the cycleGAN model using various loss functions and compared the quality of the sCT images generated by each model. We improved the artifact removal performance by incorporating CT images with added Gaussian noise augmentation into the training dataset. We developed a rule-based automatic segmentation methodology using threshold and watershed algorithms to compare the accuracy of airway segmentation for noise-reduced sCT and original CBCT. Furthermore, we validated the significance of the nasal cavity by conducting CFD based on automatically segmented shapes obtained from sCT.
Result: The generated sCT images exhibited improved quality, with the mean absolute error decreasing from 161.60 to 100.54, peak signal-to-noise ratio increasing from 22.33 to 28.65, and structural similarity index map increasing from 0.617 to 0.865. Furthermore, by comparing the airway segmentation performances of CBCT and sCT using our proposed automatic rule-based algorithm, the Dice score improved from 0.849 to 0.960. Airway segmentation performance is closely associated with the accuracy of fluid dynamics simulations. Detailed airway segmentation is crucial for altering flow dynamics and contributes significantly to diagnostics.
Conclusion: Our deep learning methodology enhances the image quality of CBCT to provide anatomical information to medical professionals and enables precise and accurate biomechanical analysis. This allows clinicians to obtain precise quantitative metrics and facilitates accurate assessment.
期刊介绍:
Computers in Biology and Medicine is an international forum for sharing groundbreaking advancements in the use of computers in bioscience and medicine. This journal serves as a medium for communicating essential research, instruction, ideas, and information regarding the rapidly evolving field of computer applications in these domains. By encouraging the exchange of knowledge, we aim to facilitate progress and innovation in the utilization of computers in biology and medicine.