{"title":"Aging of visual word perception is related to decreased segregation within and beyond the word network in the brain.","authors":"Licheng Xue, Tianying Qing, Yating Lv, Jing Zhao","doi":"10.3389/fnagi.2024.1483449","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>We investigated the neural correlates of cognitive decline in visual word perception from the perspective of intrinsic brain networks.</p><p><strong>Methods: </strong>A total of 19 healthy older adults and 22 young adults were recruited to participate in two functional magnetic resonance imaging (fMRI) sessions (one resting-state session and one for localizer tasks), along with a visual word perceptual processing task. We examined age-related alterations in resting-state functional connectivity (FC) within the word network, as well as between the word network and other networks. We tested their associations with behavioral performance in word and symbol-form processing.</p><p><strong>Results: </strong>We found that, compared to young adults, older adults exhibited increased FC between the two word-selective regions in the left and right ventral occipitotemporal cortex (vOT). Additionally, older adults exhibited increased FC between these two word-selective regions and non-word-selective regions. Notably, these FC alterations correlated with individual differences in behavioral performance in visual word perception.</p><p><strong>Discussion: </strong>These results suggest that cognitive decline in visual word perception is associated with decreased segregation within and beyond the word network in the aging brain. Our findings support the neural dedifferentiation hypothesis for cognitive decline in visual word processing and improve our understanding of interactive neural specialization theory.</p>","PeriodicalId":12450,"journal":{"name":"Frontiers in Aging Neuroscience","volume":"16 ","pages":"1483449"},"PeriodicalIF":4.1000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11655501/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Aging Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fnagi.2024.1483449","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: We investigated the neural correlates of cognitive decline in visual word perception from the perspective of intrinsic brain networks.
Methods: A total of 19 healthy older adults and 22 young adults were recruited to participate in two functional magnetic resonance imaging (fMRI) sessions (one resting-state session and one for localizer tasks), along with a visual word perceptual processing task. We examined age-related alterations in resting-state functional connectivity (FC) within the word network, as well as between the word network and other networks. We tested their associations with behavioral performance in word and symbol-form processing.
Results: We found that, compared to young adults, older adults exhibited increased FC between the two word-selective regions in the left and right ventral occipitotemporal cortex (vOT). Additionally, older adults exhibited increased FC between these two word-selective regions and non-word-selective regions. Notably, these FC alterations correlated with individual differences in behavioral performance in visual word perception.
Discussion: These results suggest that cognitive decline in visual word perception is associated with decreased segregation within and beyond the word network in the aging brain. Our findings support the neural dedifferentiation hypothesis for cognitive decline in visual word processing and improve our understanding of interactive neural specialization theory.
期刊介绍:
Frontiers in Aging Neuroscience is a leading journal in its field, publishing rigorously peer-reviewed research that advances our understanding of the mechanisms of Central Nervous System aging and age-related neural diseases. Specialty Chief Editor Thomas Wisniewski at the New York University School of Medicine is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide.