Estimation of effective dose and risk of exposure-induced cancer death, and diagnostic reference level for CT scans in Tabriz, Iran.

IF 1.7 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Radiological Physics and Technology Pub Date : 2024-12-20 DOI:10.1007/s12194-024-00872-0
Hamed Zamani, Maedeh Yektamanesh, Fatemeh Shiridokht, Soheila Sharifian Jazi, Reza Javadrashid, Amir Ghasemi Jangjoo, Mikaeil Molazadeh, Alireza Farajollahi, Tohid Mortezazadeh
{"title":"Estimation of effective dose and risk of exposure-induced cancer death, and diagnostic reference level for CT scans in Tabriz, Iran.","authors":"Hamed Zamani, Maedeh Yektamanesh, Fatemeh Shiridokht, Soheila Sharifian Jazi, Reza Javadrashid, Amir Ghasemi Jangjoo, Mikaeil Molazadeh, Alireza Farajollahi, Tohid Mortezazadeh","doi":"10.1007/s12194-024-00872-0","DOIUrl":null,"url":null,"abstract":"<p><p>This study aimed to estimate the effective dose and the risk of exposure-induced cancer death (REID), as well as to establish diagnostic reference levels (DRLs) for common CT examinations conducted in Tabriz, Iran. The investigation included adult patients undergoing abdomen-pelvis, brain, neck, sinus, and chest CT scans. Patient data, exposure parameters, and radiation dose metrics, such as volume CT dose index (CTDI<sub>vol</sub>) and dose length product (DLP), were collected and analyzed. The results showed significant variations in radiation dose across different centers for the CT scans. The average effective doses for the different CT scans were 5.65, 1.08, 1.40, 0.46, and 3.68 mSv for abdomen-pelvis, brain, neck, sinus, and chest scans, respectively. The REID values ranged from 14 per million (for sinus scans) to 196 per million (for abdomen-pelvis scans). Additionally, the DRL values for CTDIvol were 11.03 (for abdomen-pelvis), 59.52 (for brain), 8.33 (for neck), 17.05 (for sinus), and 7.83 mGy (for chest). Our results showed that most of the investigated CT scans had lower effective doses compared to the literature and the REIDs were estimated to be low. Minimizing radiation risk can be achieved by reducing CT exams and keeping doses as low as reasonably achievable. The local DRLs from this study were comparable to previous reports and can serve as benchmarks for setting national and international DRLs, helping healthcare facilities optimize radiation practices and improve patient safety in diagnostic imaging.</p>","PeriodicalId":46252,"journal":{"name":"Radiological Physics and Technology","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiological Physics and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12194-024-00872-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

This study aimed to estimate the effective dose and the risk of exposure-induced cancer death (REID), as well as to establish diagnostic reference levels (DRLs) for common CT examinations conducted in Tabriz, Iran. The investigation included adult patients undergoing abdomen-pelvis, brain, neck, sinus, and chest CT scans. Patient data, exposure parameters, and radiation dose metrics, such as volume CT dose index (CTDIvol) and dose length product (DLP), were collected and analyzed. The results showed significant variations in radiation dose across different centers for the CT scans. The average effective doses for the different CT scans were 5.65, 1.08, 1.40, 0.46, and 3.68 mSv for abdomen-pelvis, brain, neck, sinus, and chest scans, respectively. The REID values ranged from 14 per million (for sinus scans) to 196 per million (for abdomen-pelvis scans). Additionally, the DRL values for CTDIvol were 11.03 (for abdomen-pelvis), 59.52 (for brain), 8.33 (for neck), 17.05 (for sinus), and 7.83 mGy (for chest). Our results showed that most of the investigated CT scans had lower effective doses compared to the literature and the REIDs were estimated to be low. Minimizing radiation risk can be achieved by reducing CT exams and keeping doses as low as reasonably achievable. The local DRLs from this study were comparable to previous reports and can serve as benchmarks for setting national and international DRLs, helping healthcare facilities optimize radiation practices and improve patient safety in diagnostic imaging.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
伊朗大不里士CT扫描的有效剂量和暴露致癌死亡风险的估计及诊断参考水平。
本研究旨在估计有效剂量和暴露诱发癌症死亡(REID)的风险,并为在伊朗大不里士进行的普通CT检查建立诊断参考水平(drl)。研究对象包括接受腹部-骨盆、脑部、颈部、鼻窦和胸部CT扫描的成年患者。收集并分析患者数据、暴露参数和辐射剂量指标,如体积CT剂量指数(CTDIvol)和剂量长度积(DLP)。结果显示,不同CT扫描中心的辐射剂量有显著差异。不同CT扫描的平均有效剂量分别为5.65、1.08、1.40、0.46和3.68 mSv,分别用于腹部-骨盆、脑部、颈部、鼻窦和胸部扫描。REID值从百万分之14(鼻窦扫描)到百万分之196(腹部-骨盆扫描)不等。此外,CTDIvol的DRL值分别为11.03(腹骨盆)、59.52(脑)、8.33(颈部)、17.05(窦)和7.83 mGy(胸部)。我们的研究结果显示,与文献相比,大多数研究的CT扫描具有较低的有效剂量,并且估计REIDs较低。通过减少CT检查并将剂量保持在合理可行的低水平,可以将辐射风险降至最低。本研究得出的本地drl与以前的报告相当,可以作为制定国家和国际drl的基准,帮助医疗机构优化辐射实践,提高诊断成像中的患者安全性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Radiological Physics and Technology
Radiological Physics and Technology RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
3.00
自引率
12.50%
发文量
40
期刊介绍: The purpose of the journal Radiological Physics and Technology is to provide a forum for sharing new knowledge related to research and development in radiological science and technology, including medical physics and radiological technology in diagnostic radiology, nuclear medicine, and radiation therapy among many other radiological disciplines, as well as to contribute to progress and improvement in medical practice and patient health care.
期刊最新文献
Selection of Radiological Physics and Technology Awards 2024. Age-related sensitivity deterioration evaluation of positron emission tomography utilizing cross-calibration factor measurement data. Peripheral dose assessment in radiation therapy using photon beams: experimental results with optically stimulated luminescence dosimeter. Influence of obtaining medical records and laboratory data on the sensitivity of diagnostic imaging assessment by radiological technologists. Dosimetric impact of arc simulation angular resolution in single-isocentre multi-target stereotactic radiosurgery.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1