In-situ-forming zwitterionic hydrogel does not ameliorate osteoarthritis in vivo, despite protective effects ex vivo.

IF 5.5 2区 医学 Q2 MATERIALS SCIENCE, BIOMATERIALS Materials Science & Engineering C-Materials for Biological Applications Pub Date : 2024-12-13 DOI:10.1016/j.bioadv.2024.214151
Maryam Asadikorayem, Patrick Weber, Shipin Zhang, František Surman, David Fercher, Marina Fonti, Kajetana Bevc, Sami Kauppinen, Tuomas Frondelius, Mikko A J Finnilä, Marcy Zenobi-Wong
{"title":"In-situ-forming zwitterionic hydrogel does not ameliorate osteoarthritis in vivo, despite protective effects ex vivo.","authors":"Maryam Asadikorayem, Patrick Weber, Shipin Zhang, František Surman, David Fercher, Marina Fonti, Kajetana Bevc, Sami Kauppinen, Tuomas Frondelius, Mikko A J Finnilä, Marcy Zenobi-Wong","doi":"10.1016/j.bioadv.2024.214151","DOIUrl":null,"url":null,"abstract":"<p><p>Osteoarthritis (OA) is one of the most common degenerative joint diseases, with no effective therapeutic options available. In this study, we aimed to develop an interpenetrating, in-situ-forming hydrogel based on biocompatible and anti-fouling zwitterionic (ZI) polymers for early-stage OA treatment. We hypothesized that the anti-fouling properties of zwitterions could provide tissue protection, and the high charge density of these polymers would enhance tissue penetration and lubrication. The hydrogel comprises carboxybetaine acrylamide as the ZI backbone and tyramine acrylamide as a functional comonomer to enable enzymatic and tissue-adhesive crosslinking. The hydrogel demonstrated exceptional tissue penetration and long-term retention in bovine cartilage explants. Moreover, hydrogel application protected cartilage in inflammatory media, enhanced lubrication, and decreased permeability. However, ZI hydrogel injection in collagenase-induced osteoarthritis model in rats did not prevent cartilage degeneration, and similar levels of tissue degradation and surface roughness were observed in rats injected with the ZI hydrogel and in OA controls. Additionally, ZI polymer without in-situ crosslinking resulted in increased cartilage degradation compared to both hydrogel and OA control. Furthermore, synovial tissue inflammation and significantly increased immune cell infiltration were observed in response to ZI materials. This study highlights the potential immunogenicity effect of ZI polymers in our disease model, contributing to impaired protective effects as well as exacerbated degeneration.</p>","PeriodicalId":51111,"journal":{"name":"Materials Science & Engineering C-Materials for Biological Applications","volume":"169 ","pages":"214151"},"PeriodicalIF":5.5000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science & Engineering C-Materials for Biological Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.bioadv.2024.214151","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Osteoarthritis (OA) is one of the most common degenerative joint diseases, with no effective therapeutic options available. In this study, we aimed to develop an interpenetrating, in-situ-forming hydrogel based on biocompatible and anti-fouling zwitterionic (ZI) polymers for early-stage OA treatment. We hypothesized that the anti-fouling properties of zwitterions could provide tissue protection, and the high charge density of these polymers would enhance tissue penetration and lubrication. The hydrogel comprises carboxybetaine acrylamide as the ZI backbone and tyramine acrylamide as a functional comonomer to enable enzymatic and tissue-adhesive crosslinking. The hydrogel demonstrated exceptional tissue penetration and long-term retention in bovine cartilage explants. Moreover, hydrogel application protected cartilage in inflammatory media, enhanced lubrication, and decreased permeability. However, ZI hydrogel injection in collagenase-induced osteoarthritis model in rats did not prevent cartilage degeneration, and similar levels of tissue degradation and surface roughness were observed in rats injected with the ZI hydrogel and in OA controls. Additionally, ZI polymer without in-situ crosslinking resulted in increased cartilage degradation compared to both hydrogel and OA control. Furthermore, synovial tissue inflammation and significantly increased immune cell infiltration were observed in response to ZI materials. This study highlights the potential immunogenicity effect of ZI polymers in our disease model, contributing to impaired protective effects as well as exacerbated degeneration.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
17.80
自引率
0.00%
发文量
501
审稿时长
27 days
期刊介绍: Biomaterials Advances, previously known as Materials Science and Engineering: C-Materials for Biological Applications (P-ISSN: 0928-4931, E-ISSN: 1873-0191). Includes topics at the interface of the biomedical sciences and materials engineering. These topics include: • Bioinspired and biomimetic materials for medical applications • Materials of biological origin for medical applications • Materials for "active" medical applications • Self-assembling and self-healing materials for medical applications • "Smart" (i.e., stimulus-response) materials for medical applications • Ceramic, metallic, polymeric, and composite materials for medical applications • Materials for in vivo sensing • Materials for in vivo imaging • Materials for delivery of pharmacologic agents and vaccines • Novel approaches for characterizing and modeling materials for medical applications Manuscripts on biological topics without a materials science component, or manuscripts on materials science without biological applications, will not be considered for publication in Materials Science and Engineering C. New submissions are first assessed for language, scope and originality (plagiarism check) and can be desk rejected before review if they need English language improvements, are out of scope or present excessive duplication with published sources. Biomaterials Advances sits within Elsevier''s biomaterials science portfolio alongside Biomaterials, Materials Today Bio and Biomaterials and Biosystems. As part of the broader Materials Today family, Biomaterials Advances offers authors rigorous peer review, rapid decisions, and high visibility. We look forward to receiving your submissions!
期刊最新文献
Retraction notice to "Folic acid conjugated curcumin loaded biopolymeric gum acacia microsphere for triple negative breast cancer therapy in invitro and invivo model" [Mater. Sci. Eng.: C 95 (2019) 8997]. Corrigendum to "Optimising a self-assembling peptide hydrogel as a Matrigel alternative for 3-dimensional mammary epithelial cell culture" [Biomater. Adv. volume 160, (2024) 213847]. Self-assembled nanoparticles of hybrid elastin-like and Oncostatin M polymers for improved wound healing. In-situ-forming zwitterionic hydrogel does not ameliorate osteoarthritis in vivo, despite protective effects ex vivo. Hierarchically porous 3D-printed ceramic scaffolds for bone tissue engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1