Shiyu Jia, Cai Qi, Shengduo Xu, Lei Yang, Qiang Sun
{"title":"Advancements of thermoelectric nanomaterials in ROS-mediated broad-spectrum antibacterial therapies for wound healing","authors":"Shiyu Jia, Cai Qi, Shengduo Xu, Lei Yang, Qiang Sun","doi":"10.1016/j.jmst.2024.11.039","DOIUrl":null,"url":null,"abstract":"Thermoelectric (TE) materials, with the ability to convert heat into electrical energy, can generate micro-electrical fields at electronic interfaces with biological systems, making them applicable in electric-catalyzing as nanozymes, and modulate the infected microenvironment of skin wounds. Thereby, by harnessing temperature differences <em>in vitro</em> or <em>in vivo</em>, TE nanomaterials can provide antimicrobial reactive oxygen species (ROS) by catalyzing redox reactions, thereby accelerating wound healing by suppressing infection. However, despite their promising potential, there is still a lack of comprehensive understanding of the antimicrobial mechanisms, biocompatibility, and practical applications of TE nanomaterials in wound healing, as this is a newly-emerged sub-area of energy-related biomedical applications. This review aims to address this gap by highlighting the emerging progress of TE materials in wound healing, clarifying their mechanism and advances, emphasizing their potential challenges for commercialization and clinical use, and proposing novel design strategies of TE nanomaterials for effective antibacterial performance.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"83 1","pages":""},"PeriodicalIF":11.2000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmst.2024.11.039","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Thermoelectric (TE) materials, with the ability to convert heat into electrical energy, can generate micro-electrical fields at electronic interfaces with biological systems, making them applicable in electric-catalyzing as nanozymes, and modulate the infected microenvironment of skin wounds. Thereby, by harnessing temperature differences in vitro or in vivo, TE nanomaterials can provide antimicrobial reactive oxygen species (ROS) by catalyzing redox reactions, thereby accelerating wound healing by suppressing infection. However, despite their promising potential, there is still a lack of comprehensive understanding of the antimicrobial mechanisms, biocompatibility, and practical applications of TE nanomaterials in wound healing, as this is a newly-emerged sub-area of energy-related biomedical applications. This review aims to address this gap by highlighting the emerging progress of TE materials in wound healing, clarifying their mechanism and advances, emphasizing their potential challenges for commercialization and clinical use, and proposing novel design strategies of TE nanomaterials for effective antibacterial performance.
期刊介绍:
Journal of Materials Science & Technology strives to promote global collaboration in the field of materials science and technology. It primarily publishes original research papers, invited review articles, letters, research notes, and summaries of scientific achievements. The journal covers a wide range of materials science and technology topics, including metallic materials, inorganic nonmetallic materials, and composite materials.