Emulsion-templated macroporous polycaprolactone: Synthesis, degradation, additive manufacturing, and cell-growth

IF 4.1 2区 化学 Q2 POLYMER SCIENCE Polymer Pub Date : 2024-12-20 DOI:10.1016/j.polymer.2024.127971
Bar Shlomo-Avitan, Majd Machour, Samah Saied Ahmad, Yoav Friedler, Shulamit Levenberg, Michael S. Silverstein
{"title":"Emulsion-templated macroporous polycaprolactone: Synthesis, degradation, additive manufacturing, and cell-growth","authors":"Bar Shlomo-Avitan, Majd Machour, Samah Saied Ahmad, Yoav Friedler, Shulamit Levenberg, Michael S. Silverstein","doi":"10.1016/j.polymer.2024.127971","DOIUrl":null,"url":null,"abstract":"PolyHIPEs are macroporous polymers templated within high internal phase emulsions (HIPEs). The ability to tailor the macromolecular and porous structures makes polyHIPEs of interest for three dimensional tissue engineering scaffolds. In this work, polyHIPEs with densities ranging from 0.18 to 0.28 g/cc were synthesized from novel biodegradable poly(ɛ-caprolactone) (PCL) macromers based on methacrylated oligomeric PCL diols of various molecular weights. Different types of internal phases generated porous structures that varied from networks of channels to highly interconnected voids. The crosslinked macromolecular structure limited PCL crystallization, resulting in elastomeric behavior with moduli of around 20 kPa. The HIPEs proved suitable for 3D printing both in air and in an innovative gel-bath. The suitability of the polyHIPEs for tissue engineering applications was indicated by their moduli, by their complete degradation within 4 h in 3 M NaOH, and by the mesenchymal stem cells adhering and proliferating. The high level of viability can be attributed to the porosity that enables sufficient nutrient and waste diffusion. These results provide a foundation for designing 3D HIPE inks for printing macroporous tissue engineering scaffolds.","PeriodicalId":405,"journal":{"name":"Polymer","volume":"55 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.polymer.2024.127971","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

PolyHIPEs are macroporous polymers templated within high internal phase emulsions (HIPEs). The ability to tailor the macromolecular and porous structures makes polyHIPEs of interest for three dimensional tissue engineering scaffolds. In this work, polyHIPEs with densities ranging from 0.18 to 0.28 g/cc were synthesized from novel biodegradable poly(ɛ-caprolactone) (PCL) macromers based on methacrylated oligomeric PCL diols of various molecular weights. Different types of internal phases generated porous structures that varied from networks of channels to highly interconnected voids. The crosslinked macromolecular structure limited PCL crystallization, resulting in elastomeric behavior with moduli of around 20 kPa. The HIPEs proved suitable for 3D printing both in air and in an innovative gel-bath. The suitability of the polyHIPEs for tissue engineering applications was indicated by their moduli, by their complete degradation within 4 h in 3 M NaOH, and by the mesenchymal stem cells adhering and proliferating. The high level of viability can be attributed to the porosity that enables sufficient nutrient and waste diffusion. These results provide a foundation for designing 3D HIPE inks for printing macroporous tissue engineering scaffolds.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
乳液模板大孔聚己内酯:合成、降解、增材制造和细胞生长
PolyHIPEs是在高内相乳剂(HIPEs)中模板化的大孔聚合物。定制大分子和多孔结构的能力使polyHIPEs成为三维组织工程支架的兴趣。在这项工作中,以不同分子量的甲基丙烯酸化聚己内酯低聚二醇为基础,用新型可生物降解的聚己内酯(PCL)大分子合成了密度为0.18至0.28 g/cc的聚hipes。不同类型的内部相产生的多孔结构从通道网络到高度互连的空隙不等。交联的大分子结构限制了PCL的结晶,导致模量约为20 kPa的弹性体行为。事实证明,HIPEs适用于在空气和创新的凝胶浴中进行3D打印。通过其模量、在3 M NaOH中4小时内完全降解以及间充质干细胞粘附和增殖,表明了多hipes在组织工程应用中的适用性。高水平的生存力可归因于孔隙度,使足够的营养物质和废物扩散。这些结果为大孔组织工程支架3D打印用HIPE油墨的设计提供了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Polymer
Polymer 化学-高分子科学
CiteScore
7.90
自引率
8.70%
发文量
959
审稿时长
32 days
期刊介绍: Polymer is an interdisciplinary journal dedicated to publishing innovative and significant advances in Polymer Physics, Chemistry and Technology. We welcome submissions on polymer hybrids, nanocomposites, characterisation and self-assembly. Polymer also publishes work on the technological application of polymers in energy and optoelectronics. The main scope is covered but not limited to the following core areas: Polymer Materials Nanocomposites and hybrid nanomaterials Polymer blends, films, fibres, networks and porous materials Physical Characterization Characterisation, modelling and simulation* of molecular and materials properties in bulk, solution, and thin films Polymer Engineering Advanced multiscale processing methods Polymer Synthesis, Modification and Self-assembly Including designer polymer architectures, mechanisms and kinetics, and supramolecular polymerization Technological Applications Polymers for energy generation and storage Polymer membranes for separation technology Polymers for opto- and microelectronics.
期刊最新文献
Flame retardant and anti-corrosion epoxy resin with strong mechanical property enabled by P/N/S ionic compound Enhancing Degradation Resistance of Polyglycolic Acid through Stereocomplex Polylactic Acid Integration: A Novel “Stereo-Lock” Approach Dynamics of Hydrogen-bonded Polymer Complexes of Poly(ether oxide) and Poly(acrylic acid): Time-Humidity-Temperature Equivalence Preparation and characterization of organosilicon RAFT-modified anionic surface sizing agents Effect of free-volume holes on mechanical properties of carbon-fiber-reinforced polymers (CFRPs) studied by positron annihilation age-momentum correlation spectroscopy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1