{"title":"In-situ Synthesis of FeS Nanoparticles Enhances Sulfamethoxazole Degradation via Accelerated Electron Transfer in Anaerobic Bacterial Communities","authors":"Yaru Zhang, Zhaoyong Bian, Feng Wang, Yiyin Peng, Wenyu Xiao, Qiang Zhang","doi":"10.1016/j.watres.2024.123025","DOIUrl":null,"url":null,"abstract":"The impact of nanominerals on microbial electron transfer and energy metabolism strategies during pollutant degradation remains uncertain. This study used in situ synthesized FeS nanoparticles (FeS NPs) to increase the degradation efficiency of SMX by anaerobic bacterial communities from 25.80% to 47.60%. The proportion of intracellular degradation by bacteria in the community significantly increased by 23.25 times, which mainly facilitated by NADH-dependent reductases and iron-sulfur proteins. Microbial network analysis and electrochemical analysis indicated that the in-situ synthesis of FeS NPs altered the interactions among different microbial species, enabling <em>Petrimonas</em> to transfer electrons directly to <em>Lysinibacillus</em> more effectively. This adjustment led to an increase in the activity of the electron transport system by 1.2 times, an increase in the electron supply capacity by 2.8 times, and a decrease in the electrochemical impedance (EIS) to 3.21 Ω. Moreover, the coupling of electron transfer pathways and protease transport channels significantly increased Na<sup>+</sup>/K<sup>+</sup>-ATPase by 14.72 times. Inhibitor experiments and molecular dynamics (MD) results showed that FeS NPs interact with Nqo1 in the cell membrane via electrostatic force at -28.573 kcal/mol, forming a unique electron conduit with ubiquinone (CoQ). This study provides new insights into the role of in situ nanominerals in electron transfer between different microorganisms, aim to enhance the antibiotic wastewater treatment efficiency in actual anaerobic processes.","PeriodicalId":443,"journal":{"name":"Water Research","volume":"79 1","pages":""},"PeriodicalIF":11.4000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.watres.2024.123025","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
The impact of nanominerals on microbial electron transfer and energy metabolism strategies during pollutant degradation remains uncertain. This study used in situ synthesized FeS nanoparticles (FeS NPs) to increase the degradation efficiency of SMX by anaerobic bacterial communities from 25.80% to 47.60%. The proportion of intracellular degradation by bacteria in the community significantly increased by 23.25 times, which mainly facilitated by NADH-dependent reductases and iron-sulfur proteins. Microbial network analysis and electrochemical analysis indicated that the in-situ synthesis of FeS NPs altered the interactions among different microbial species, enabling Petrimonas to transfer electrons directly to Lysinibacillus more effectively. This adjustment led to an increase in the activity of the electron transport system by 1.2 times, an increase in the electron supply capacity by 2.8 times, and a decrease in the electrochemical impedance (EIS) to 3.21 Ω. Moreover, the coupling of electron transfer pathways and protease transport channels significantly increased Na+/K+-ATPase by 14.72 times. Inhibitor experiments and molecular dynamics (MD) results showed that FeS NPs interact with Nqo1 in the cell membrane via electrostatic force at -28.573 kcal/mol, forming a unique electron conduit with ubiquinone (CoQ). This study provides new insights into the role of in situ nanominerals in electron transfer between different microorganisms, aim to enhance the antibiotic wastewater treatment efficiency in actual anaerobic processes.
期刊介绍:
Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include:
•Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management;
•Urban hydrology including sewer systems, stormwater management, and green infrastructure;
•Drinking water treatment and distribution;
•Potable and non-potable water reuse;
•Sanitation, public health, and risk assessment;
•Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions;
•Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment;
•Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution;
•Environmental restoration, linked to surface water, groundwater and groundwater remediation;
•Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts;
•Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle;
•Socio-economic, policy, and regulations studies.