{"title":"Study on Damage Characteristics and Physical Field Characteristics of Roadway Surrounding Rock Under Multiple Disturbances","authors":"Jiuxin Zhang, Hongyan Qin, Zhenhua Ouyang, Ningbo Zhang, Yiyan Zhang, Yang Liu, Wenshuai Li, Ranran Zhou","doi":"10.1002/ese3.1964","DOIUrl":null,"url":null,"abstract":"<p>During the mining process, repetitive stress disturbances induced by mining activities can lead to alterations in the physical properties of coal, potentially resulting in rockburst occurrences within tunnels. To investigate the propagation rule of physical field characteristics and characteristics of failure in roadway surrounding rock under multiple disturbance damage caused by dynamic load, a combined experimental and theoretical analysis is conducted to study the weakening effect of rock mass under various disturbance circumstances. A model of roadway surrounding rock loosening and failure under multiple disturbances was proposed. The degree of damage is quantified by defining the weakening coefficient <i>D</i><sub><i>i</i></sub>, A “weakening variable method” is proposed to confirm the main parameters of the Holmquist-John-son-Cook (HJC) model under different disturbance conditions. The reliability of these findings was validated through a microseismic event at the Tangshan coal mine's 0250 working face in 2020, followed by numerical simulation studies. The results indicate that damaged coal weakens the intensity of stress waves at the same source velocity, with the strongest effect observed at interfaces between different damage zones. Furthermore, damaged coal exhibits a stronger weakening effect on stress wave propagation speed compared to undamaged coal in non-interface areas. The study on roadway stability reveals that severely damaged coal-rock samples significantly weaken stress waves; however, they also exhibit lower minimum energy for dynamic failure in roadway surrounding rock, indicating that low-stress waves cause greater damage under severe damage conditions. The study investigates the impact of coal rock mass degradation on the stability of surrounding roadways under various disturbance conditions, which holds significant implications for the timely identification of potential instability risks in damaged coal bodies, optimization of support strategies, and ensuring mining safety.</p>","PeriodicalId":11673,"journal":{"name":"Energy Science & Engineering","volume":"12 12","pages":"5504-5519"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ese3.1964","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ese3.1964","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
During the mining process, repetitive stress disturbances induced by mining activities can lead to alterations in the physical properties of coal, potentially resulting in rockburst occurrences within tunnels. To investigate the propagation rule of physical field characteristics and characteristics of failure in roadway surrounding rock under multiple disturbance damage caused by dynamic load, a combined experimental and theoretical analysis is conducted to study the weakening effect of rock mass under various disturbance circumstances. A model of roadway surrounding rock loosening and failure under multiple disturbances was proposed. The degree of damage is quantified by defining the weakening coefficient Di, A “weakening variable method” is proposed to confirm the main parameters of the Holmquist-John-son-Cook (HJC) model under different disturbance conditions. The reliability of these findings was validated through a microseismic event at the Tangshan coal mine's 0250 working face in 2020, followed by numerical simulation studies. The results indicate that damaged coal weakens the intensity of stress waves at the same source velocity, with the strongest effect observed at interfaces between different damage zones. Furthermore, damaged coal exhibits a stronger weakening effect on stress wave propagation speed compared to undamaged coal in non-interface areas. The study on roadway stability reveals that severely damaged coal-rock samples significantly weaken stress waves; however, they also exhibit lower minimum energy for dynamic failure in roadway surrounding rock, indicating that low-stress waves cause greater damage under severe damage conditions. The study investigates the impact of coal rock mass degradation on the stability of surrounding roadways under various disturbance conditions, which holds significant implications for the timely identification of potential instability risks in damaged coal bodies, optimization of support strategies, and ensuring mining safety.
期刊介绍:
Energy Science & Engineering is a peer reviewed, open access journal dedicated to fundamental and applied research on energy and supply and use. Published as a co-operative venture of Wiley and SCI (Society of Chemical Industry), the journal offers authors a fast route to publication and the ability to share their research with the widest possible audience of scientists, professionals and other interested people across the globe. Securing an affordable and low carbon energy supply is a critical challenge of the 21st century and the solutions will require collaboration between scientists and engineers worldwide. This new journal aims to facilitate collaboration and spark innovation in energy research and development. Due to the importance of this topic to society and economic development the journal will give priority to quality research papers that are accessible to a broad readership and discuss sustainable, state-of-the art approaches to shaping the future of energy. This multidisciplinary journal will appeal to all researchers and professionals working in any area of energy in academia, industry or government, including scientists, engineers, consultants, policy-makers, government officials, economists and corporate organisations.