Enhancement of Proton Transport in Nafion Membranes via Azol Functional Silica Nanoparticles for PEMFC Applications

IF 1.9 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY ChemistrySelect Pub Date : 2024-12-12 DOI:10.1002/slct.202403873
Ayşe Aslan
{"title":"Enhancement of Proton Transport in Nafion Membranes via Azol Functional Silica Nanoparticles for PEMFC Applications","authors":"Ayşe Aslan","doi":"10.1002/slct.202403873","DOIUrl":null,"url":null,"abstract":"<p>This study comprises the production and characterization of multifunctional silica nanoparticles and their incorporation into Nafion for proton exchange membrane fuel cell (PEMFC) applications. A two-step method was used to produce Azole-SiO<sub>2</sub>/Nafion; First, epoxy functional SiO<sub>2</sub> nanoparticles were functionalized with 5-Amino-Tetrazole (Tet-SiO<sub>2</sub>), 3-Amino-1,2,4-Triazole (ATri-SiO<sub>2</sub>), and 1H-1,2,4-Triazole (Tri-SiO<sub>2</sub>) via ring opening of the epoxy unit. After the synthesis of functional nanoparticles, Nafion composite membranes were prepared via the mechanical mixing method. Azole-SiO<sub>2</sub>/Nafion composite membranes were characterized by FT-IR, and TGA were used to investigate the structural thermal properties, and the results indicated that they were thermally stable up to approximately 380<sup> </sup>°C. The anhydrous conductivity of the Nafion composite membranes were studied by a dielectric impedance analyzer and maximum conductivity was measured for N-SiO<sub>2</sub>-Tet10 as 1.01 × 10<sup>−2</sup> (Scm<sup>−1</sup>) at 160 °C.</p>","PeriodicalId":146,"journal":{"name":"ChemistrySelect","volume":"9 47","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemistrySelect","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/slct.202403873","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study comprises the production and characterization of multifunctional silica nanoparticles and their incorporation into Nafion for proton exchange membrane fuel cell (PEMFC) applications. A two-step method was used to produce Azole-SiO2/Nafion; First, epoxy functional SiO2 nanoparticles were functionalized with 5-Amino-Tetrazole (Tet-SiO2), 3-Amino-1,2,4-Triazole (ATri-SiO2), and 1H-1,2,4-Triazole (Tri-SiO2) via ring opening of the epoxy unit. After the synthesis of functional nanoparticles, Nafion composite membranes were prepared via the mechanical mixing method. Azole-SiO2/Nafion composite membranes were characterized by FT-IR, and TGA were used to investigate the structural thermal properties, and the results indicated that they were thermally stable up to approximately 380 °C. The anhydrous conductivity of the Nafion composite membranes were studied by a dielectric impedance analyzer and maximum conductivity was measured for N-SiO2-Tet10 as 1.01 × 10−2 (Scm−1) at 160 °C.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过用于 PEMFC 的 Azol 功能性二氧化硅纳米粒子增强 Nafion 膜中的质子传输
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ChemistrySelect
ChemistrySelect Chemistry-General Chemistry
CiteScore
3.30
自引率
4.80%
发文量
1809
审稿时长
1.6 months
期刊介绍: ChemistrySelect is the latest journal from ChemPubSoc Europe and Wiley-VCH. It offers researchers a quality society-owned journal in which to publish their work in all areas of chemistry. Manuscripts are evaluated by active researchers to ensure they add meaningfully to the scientific literature, and those accepted are processed quickly to ensure rapid online publication.
期刊最新文献
Exploring the Antioxidant, Antimicrobial, Antidiabetic, and Anticancer Properties of Capsicum annuum L. (Samandağ Pepper): Biochemical and In Silico Insights Green Synthesis of Repotrectinib: Impact of Aqueous Micellar Media on Chemoenzymatic Transformations Construction of Sorafenib Tosylate and Etoposide-loaded Liposomes: A Path to Precision Liver Cancer Therapy and its Apoptosis Induction Cover Picture: (ChemistrySelect 48/2024) Eco-Friendly Synthesis of Cobalt Oxide Nanoparticles Using Gum Arabic Polymer: Examining Their Photocatalytic Efficiency and Cytotoxicity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1