NLSDeconv: an efficient cell-type deconvolution method for spatial transcriptomics data.

Yunlu Chen, Feng Ruan, Ji-Ping Wang
{"title":"NLSDeconv: an efficient cell-type deconvolution method for spatial transcriptomics data.","authors":"Yunlu Chen, Feng Ruan, Ji-Ping Wang","doi":"10.1093/bioinformatics/btae747","DOIUrl":null,"url":null,"abstract":"<p><strong>Summary: </strong>Spatial transcriptomics (ST) allows gene expression profiling within intact tissue samples but lacks single-cell resolution. This necessitates computational deconvolution methods to estimate the contributions of distinct cell types. This article introduces NLSDeconv, a novel cell-type deconvolution method based on non-negative least squares, along with an accompanying Python package. Benchmarking against 18 existing deconvolution methods on various ST datasets demonstrates NLSDeconv's competitive statistical performance and superior computational efficiency.</p><p><strong>Availability and implementation: </strong>NLSDeconv is freely available at https://github.com/tinachentc/NLSDeconv as a Python package.</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11696698/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btae747","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Summary: Spatial transcriptomics (ST) allows gene expression profiling within intact tissue samples but lacks single-cell resolution. This necessitates computational deconvolution methods to estimate the contributions of distinct cell types. This article introduces NLSDeconv, a novel cell-type deconvolution method based on non-negative least squares, along with an accompanying Python package. Benchmarking against 18 existing deconvolution methods on various ST datasets demonstrates NLSDeconv's competitive statistical performance and superior computational efficiency.

Availability and implementation: NLSDeconv is freely available at https://github.com/tinachentc/NLSDeconv as a Python package.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
NLSDeconv:一种有效的细胞型反褶积方法,用于空间转录组学数据。
空间转录组学(ST)允许在完整的组织样本中进行基因表达谱分析,但缺乏单细胞分辨率。这需要计算反卷积方法来估计不同细胞类型的贡献。本文介绍了一种基于非负最小二乘的新型细胞型反卷积方法NLSDeconv,并附带了一个Python包。在不同的ST数据集上对现有的18种反卷积方法进行了基准测试,证明了NLSDeconv具有竞争力的统计性能和优越的计算效率。可用性和实现:NLSDeconv作为Python包可在https://github.com/tinachentc/NLSDeconv免费获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
HTSinfer: Inferring metadata from bulk illumina RNA-Seq libraries. MOSTPLAS: A Self-correction Multi-label Learning Model for Plasmid Host Range Prediction. GCLink: a graph contrastive link prediction framework for gene regulatory network inference. PNL: a software to build polygenic risk scores using a Super Learner approach based on PairNet, a Convolutional Neural Network. TiltRec: An ultra-fast and open-source toolkit for cryo-electron tomographic reconstruction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1