PNL: a software to build polygenic risk scores using a Super Learner approach based on PairNet, a Convolutional Neural Network.

Ting-Huei Chen, Chia-Jung Lee, Syue-Pu Chen, Shang-Jung Wu, Cathy S J Fann
{"title":"PNL: a software to build polygenic risk scores using a Super Learner approach based on PairNet, a Convolutional Neural Network.","authors":"Ting-Huei Chen, Chia-Jung Lee, Syue-Pu Chen, Shang-Jung Wu, Cathy S J Fann","doi":"10.1093/bioinformatics/btaf071","DOIUrl":null,"url":null,"abstract":"<p><strong>Summary: </strong>Polygenic risk scores (PRS) hold promise for early disease diagnosis and personalized treatment, but their overall discriminative power remains limited for many diseases in the general population. As a result, numerous novel PRS modeling techniques have been developed to improve predictive performance, but determining the most effective method for a specific application remains uncertain until tested. Hence, we introduce a novel, versatile tool for building an optimized PRS model by integrating candidate models from multiple existing PRS building methods that use target population data and/or incorporating information from other populations through a trans-ethnic approach. Our tool, PNL is based on PairNet algorithm, a Convolutional Neural Network with low computation complexity through simple paring operation. In the case studies for asthma, type 2 diabetes, and vertigo, the optimal PRS model generated with PNL using only TWB data achieved AUCs that matched or improved the best results using other methods individually. Incorporating UKBB data further improved performance of PNL for asthma and type 2 diabetes. For vertigo, unlike the other diseases, individual method analysis showed that UKBB data alone generally produced lower AUCs compared to TWB data alone. As a result, incorporating UKBB data did not improve AUC with PNL, suggesting that increasing the number of candidate models does not necessarily result in higher AUC values, alleviating concerns about overfitting.</p><p><strong>Availability and implementation: </strong>The python code for PairNet algorithm incorporated in PNL is freely available on: https://github.com/FannLab/pairnet. An archived, citable version is stored on: https://doi.org/10.5281/zenodo.14838227.</p><p><strong>Contact: </strong>Correspondence should be addressed to corresponding authors.</p><p><strong>Supplementary information: </strong>Detailed implementation procedures can be found in the Supplementary Materials.</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btaf071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Summary: Polygenic risk scores (PRS) hold promise for early disease diagnosis and personalized treatment, but their overall discriminative power remains limited for many diseases in the general population. As a result, numerous novel PRS modeling techniques have been developed to improve predictive performance, but determining the most effective method for a specific application remains uncertain until tested. Hence, we introduce a novel, versatile tool for building an optimized PRS model by integrating candidate models from multiple existing PRS building methods that use target population data and/or incorporating information from other populations through a trans-ethnic approach. Our tool, PNL is based on PairNet algorithm, a Convolutional Neural Network with low computation complexity through simple paring operation. In the case studies for asthma, type 2 diabetes, and vertigo, the optimal PRS model generated with PNL using only TWB data achieved AUCs that matched or improved the best results using other methods individually. Incorporating UKBB data further improved performance of PNL for asthma and type 2 diabetes. For vertigo, unlike the other diseases, individual method analysis showed that UKBB data alone generally produced lower AUCs compared to TWB data alone. As a result, incorporating UKBB data did not improve AUC with PNL, suggesting that increasing the number of candidate models does not necessarily result in higher AUC values, alleviating concerns about overfitting.

Availability and implementation: The python code for PairNet algorithm incorporated in PNL is freely available on: https://github.com/FannLab/pairnet. An archived, citable version is stored on: https://doi.org/10.5281/zenodo.14838227.

Contact: Correspondence should be addressed to corresponding authors.

Supplementary information: Detailed implementation procedures can be found in the Supplementary Materials.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
MOSTPLAS: A Self-correction Multi-label Learning Model for Plasmid Host Range Prediction. GCLink: a graph contrastive link prediction framework for gene regulatory network inference. PNL: a software to build polygenic risk scores using a Super Learner approach based on PairNet, a Convolutional Neural Network. TiltRec: An ultra-fast and open-source toolkit for cryo-electron tomographic reconstruction. Single-cell copy number calling and event history reconstruction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1