Exogenous salicylic acid reduces cadmium content in spinach (Spinacia oleracea L.) shoots under cadmium stress.

IF 4.3 2区 生物学 Q1 PLANT SCIENCES BMC Plant Biology Pub Date : 2024-12-21 DOI:10.1186/s12870-024-05948-y
Wen Tang, Le Liang, Haixing Yang, Xuena Yu, Xudong Ye, Yongdong Xie, Rulong Li, Lijin Lin, Zhi Huang, Bo Sun, Guochao Sun, Li Liu, Huanxiu Li, Yi Tang
{"title":"Exogenous salicylic acid reduces cadmium content in spinach (Spinacia oleracea L.) shoots under cadmium stress.","authors":"Wen Tang, Le Liang, Haixing Yang, Xuena Yu, Xudong Ye, Yongdong Xie, Rulong Li, Lijin Lin, Zhi Huang, Bo Sun, Guochao Sun, Li Liu, Huanxiu Li, Yi Tang","doi":"10.1186/s12870-024-05948-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Consumption of leafy vegetables is a primary route of cadmium (Cd) exposure in the human body. Salicylic acid (SA) is a major stress signaling molecule that alleviates Cd toxicity in various plants. Our study aimed to investigate the effects of different SA concentrations on spinach growth, cadmium accumulation, and stress resistance physiology under cadmium stress (50 µmol/L).</p><p><strong>Results: </strong>Cd stress significantly markedly decreased spinach growth and biomass, reduced its photosynthetic efficiency, increased activities of antioxidative enzymes, and upregulated the relative expression of several genes involved in cadmium absorption and transport compared to the control. The exogenous application of SA mitigated the harmful effects of Cd in spinach. 0.8 and 1.6 mmol/L SA significantly increased spinach root length, plant height, and biomass and decreased the Cd content in shoots by 30.03 and 17.35% compared to the Cd-treated group. Moreover, SA alleviated the yellowing of leaves caused by Cd stress. Exogenous SA ameliorated Cd toxicity in spinach by reducing reactive oxygen species, malondialdehyde, proline, and soluble protein levels. Exogenous SA application reduced Cd absorption in spinach leaves by downregulating the expression of genes involved in Cd transport, such as SoHMA4-like, SoNramp3.1-like, SoNramp6-like, and SoNramp7.2-like. Principal component analysis and correlation analysis showed that exogenous SA application under Cd stress was correlated with plant Cd content, photosynthetic pigment content, and relative expression of Cd absorption and transportation-related genes.</p><p><strong>Conclusions: </strong>To summarize, these findings indicate that SA mitigates Cd toxicity in spinach by reversing the adverse effects of Cd stress on plant growth and reducing Cd accumulation in the shoots.</p>","PeriodicalId":9198,"journal":{"name":"BMC Plant Biology","volume":"24 1","pages":"1226"},"PeriodicalIF":4.3000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11662821/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12870-024-05948-y","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Consumption of leafy vegetables is a primary route of cadmium (Cd) exposure in the human body. Salicylic acid (SA) is a major stress signaling molecule that alleviates Cd toxicity in various plants. Our study aimed to investigate the effects of different SA concentrations on spinach growth, cadmium accumulation, and stress resistance physiology under cadmium stress (50 µmol/L).

Results: Cd stress significantly markedly decreased spinach growth and biomass, reduced its photosynthetic efficiency, increased activities of antioxidative enzymes, and upregulated the relative expression of several genes involved in cadmium absorption and transport compared to the control. The exogenous application of SA mitigated the harmful effects of Cd in spinach. 0.8 and 1.6 mmol/L SA significantly increased spinach root length, plant height, and biomass and decreased the Cd content in shoots by 30.03 and 17.35% compared to the Cd-treated group. Moreover, SA alleviated the yellowing of leaves caused by Cd stress. Exogenous SA ameliorated Cd toxicity in spinach by reducing reactive oxygen species, malondialdehyde, proline, and soluble protein levels. Exogenous SA application reduced Cd absorption in spinach leaves by downregulating the expression of genes involved in Cd transport, such as SoHMA4-like, SoNramp3.1-like, SoNramp6-like, and SoNramp7.2-like. Principal component analysis and correlation analysis showed that exogenous SA application under Cd stress was correlated with plant Cd content, photosynthetic pigment content, and relative expression of Cd absorption and transportation-related genes.

Conclusions: To summarize, these findings indicate that SA mitigates Cd toxicity in spinach by reversing the adverse effects of Cd stress on plant growth and reducing Cd accumulation in the shoots.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
BMC Plant Biology
BMC Plant Biology 生物-植物科学
CiteScore
8.40
自引率
3.80%
发文量
539
审稿时长
3.8 months
期刊介绍: BMC Plant Biology is an open access, peer-reviewed journal that considers articles on all aspects of plant biology, including molecular, cellular, tissue, organ and whole organism research.
期刊最新文献
Differential biochemical responses of seven Indian wheat genotypes to temperature stress. Expression divergence of BAG gene family in maize under heat stress. Insights on the Mesembryanthemum forsskalii phenotype and study of the effects of several exogenous plant growth regulators via plant tissue culture. The StbHLH47 transcription factor negatively regulates drought tolerance in potato (Solanum tuberosum L.). Assembly and analysis of the first complete mitochondrial genome sequencing of main Tea-oil Camellia cultivars Camellia drupifera (Theaceae): revealed a multi-branch mitochondrial conformation for Camellia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1