Study on the Mechanism of Bifidobacterium animalis subsp. lactis F1-3-2 Regulating Bile Acid Metabolism Through TMA-TMAO Pathway to Improve Atherosclerosis.

IF 4.4 2区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Probiotics and Antimicrobial Proteins Pub Date : 2024-12-21 DOI:10.1007/s12602-024-10417-x
Xiumei Zheng, Zhe Zhang, Tianhu Shan, Maozhen Zhao, Haiyan Lu, Lanwei Zhang, Xi Liang
{"title":"Study on the Mechanism of Bifidobacterium animalis subsp. lactis F1-3-2 Regulating Bile Acid Metabolism Through TMA-TMAO Pathway to Improve Atherosclerosis.","authors":"Xiumei Zheng, Zhe Zhang, Tianhu Shan, Maozhen Zhao, Haiyan Lu, Lanwei Zhang, Xi Liang","doi":"10.1007/s12602-024-10417-x","DOIUrl":null,"url":null,"abstract":"<p><p>Atherosclerosis is a major cause of cardiovascular disease (CVD). The trimethylamine (TMA)-trimethylamine N-oxide (TMAO) pathway is a key crossover pathway highly associated with diet, gut microbiome, and atherosclerosis. The Bifidobacterium animalis subsp. lactis F1-3-2 (Bif. animalis F1-3-2, No. CCTCCM2020832) was screened through in vitro and in vivo experiments in the early stage of this study with excellent lipid-lowering and anti-inflammatory function. By building an atherosclerosis model and focusing on TMAO, the specific mechanism of Bif. animalis F1-3-2 to improve atherosclerosis was explored. The study found that Bif. animalis F1-3-2 effectively improved the accumulation of aortic plaque in atherosclerotic mice. The strain improved lipid metabolism in serum and liver. It decreased the serum TMA and TMAO, regulated bile acid composition, participated in the farnesoid X receptor (FXR) pathway to improve lipid metabolism, and further reduced the aortic macrophage foam cell accumulation. In addition, the strain could improve the structure of the intestinal microbiome and reduce the proportion of Firmicutes and Bacteroidetes. The abundance of Turicibacter, Clostridium sensu stricto_1, and Romboutsia was reduced at the genus level. The differential microbiota is highly correlated with bile acid metabolism, which is speculated to be involved in ameliorating atherosclerotic lipid metabolism disorders.</p>","PeriodicalId":20506,"journal":{"name":"Probiotics and Antimicrobial Proteins","volume":" ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probiotics and Antimicrobial Proteins","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12602-024-10417-x","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Atherosclerosis is a major cause of cardiovascular disease (CVD). The trimethylamine (TMA)-trimethylamine N-oxide (TMAO) pathway is a key crossover pathway highly associated with diet, gut microbiome, and atherosclerosis. The Bifidobacterium animalis subsp. lactis F1-3-2 (Bif. animalis F1-3-2, No. CCTCCM2020832) was screened through in vitro and in vivo experiments in the early stage of this study with excellent lipid-lowering and anti-inflammatory function. By building an atherosclerosis model and focusing on TMAO, the specific mechanism of Bif. animalis F1-3-2 to improve atherosclerosis was explored. The study found that Bif. animalis F1-3-2 effectively improved the accumulation of aortic plaque in atherosclerotic mice. The strain improved lipid metabolism in serum and liver. It decreased the serum TMA and TMAO, regulated bile acid composition, participated in the farnesoid X receptor (FXR) pathway to improve lipid metabolism, and further reduced the aortic macrophage foam cell accumulation. In addition, the strain could improve the structure of the intestinal microbiome and reduce the proportion of Firmicutes and Bacteroidetes. The abundance of Turicibacter, Clostridium sensu stricto_1, and Romboutsia was reduced at the genus level. The differential microbiota is highly correlated with bile acid metabolism, which is speculated to be involved in ameliorating atherosclerotic lipid metabolism disorders.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Probiotics and Antimicrobial Proteins
Probiotics and Antimicrobial Proteins BIOTECHNOLOGY & APPLIED MICROBIOLOGYMICROB-MICROBIOLOGY
CiteScore
11.30
自引率
6.10%
发文量
140
期刊介绍: Probiotics and Antimicrobial Proteins publishes reviews, original articles, letters and short notes and technical/methodological communications aimed at advancing fundamental knowledge and exploration of the applications of probiotics, natural antimicrobial proteins and their derivatives in biomedical, agricultural, veterinary, food, and cosmetic products. The Journal welcomes fundamental research articles and reports on applications of these microorganisms and substances, and encourages structural studies and studies that correlate the structure and functional properties of antimicrobial proteins.
期刊最新文献
Antioxidant and Antimicrobial Properties of Probiotics: Insights from In Vitro Assays. Are Probiotics Beneficial or Harmful for Pancreatic Cancer Outcomes? Dietary Supplementation with Multi-strain Probiotic Formulation (Bifidobacterium B8101, Lactobacillus L8603, Saccharomyces bayanus S9308, and Enterococcus SF9301), Betaine or their Combination Promotes Growth Performance Via Improving Intestinal Development in Broilers. Study on the Mechanism of Bifidobacterium animalis subsp. lactis F1-3-2 Regulating Bile Acid Metabolism Through TMA-TMAO Pathway to Improve Atherosclerosis. The Efficacy of Cecropin Against Multidrug-Resistant Bacteria Is Linked to the Destabilization of Outer Membrane Structure LPS of Gram-Negative Bacteria.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1