Strategies for automated affinity purification-resin screening for non-traditional biopharmaceuticals in the discovery space.

IF 3.1 3区 医学 Q2 CHEMISTRY, ANALYTICAL Journal of pharmaceutical and biomedical analysis Pub Date : 2024-12-17 DOI:10.1016/j.jpba.2024.116637
Jordan R Cave, Alexey A Makarov, Gregory F Pirrone
{"title":"Strategies for automated affinity purification-resin screening for non-traditional biopharmaceuticals in the discovery space.","authors":"Jordan R Cave, Alexey A Makarov, Gregory F Pirrone","doi":"10.1016/j.jpba.2024.116637","DOIUrl":null,"url":null,"abstract":"<p><p>Biotherapeutics occupy a significant portion of the pharmaceutical pipeline and are projected to continue growing in sales and scope. Further, the field is advancing novel and more complex molecules beyond monoclonal antibodies including multi-target proteins, engineered proteins and bioconjugates. In this aspect, the development of increasingly advanced and challenging therapies necessitates a commiserate degree of innovation to develop automated methods for resin screening, purification, and analytics in the discovery space to quickly identify liabilities and rank candidates with minimal impact on developmental resources. In this work, we introduce an automated resin screening platform tailored to small scale production runs for clone evaluation and process development in the biologics discovery space. The complex characteristics of these novel therapies requires empirical testing of resin to ensure optimal recovery of high-quality material for evaluation to inform on cell line development and future downstream process and analytical method development. This workflow enables the purification of milligrams of protein material for analytical testing and identifies ideal resins to leverage downstream as a candidate quickly progresses. This workflow was validated using a research monoclonal antibody and applied to a novel bispecific fusion protein to evaluate resin performance with respect to recovery, purity and impact on higher-order structure.</p>","PeriodicalId":16685,"journal":{"name":"Journal of pharmaceutical and biomedical analysis","volume":"255 ","pages":"116637"},"PeriodicalIF":3.1000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of pharmaceutical and biomedical analysis","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jpba.2024.116637","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Biotherapeutics occupy a significant portion of the pharmaceutical pipeline and are projected to continue growing in sales and scope. Further, the field is advancing novel and more complex molecules beyond monoclonal antibodies including multi-target proteins, engineered proteins and bioconjugates. In this aspect, the development of increasingly advanced and challenging therapies necessitates a commiserate degree of innovation to develop automated methods for resin screening, purification, and analytics in the discovery space to quickly identify liabilities and rank candidates with minimal impact on developmental resources. In this work, we introduce an automated resin screening platform tailored to small scale production runs for clone evaluation and process development in the biologics discovery space. The complex characteristics of these novel therapies requires empirical testing of resin to ensure optimal recovery of high-quality material for evaluation to inform on cell line development and future downstream process and analytical method development. This workflow enables the purification of milligrams of protein material for analytical testing and identifies ideal resins to leverage downstream as a candidate quickly progresses. This workflow was validated using a research monoclonal antibody and applied to a novel bispecific fusion protein to evaluate resin performance with respect to recovery, purity and impact on higher-order structure.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.70
自引率
5.90%
发文量
588
审稿时长
37 days
期刊介绍: This journal is an international medium directed towards the needs of academic, clinical, government and industrial analysis by publishing original research reports and critical reviews on pharmaceutical and biomedical analysis. It covers the interdisciplinary aspects of analysis in the pharmaceutical, biomedical and clinical sciences, including developments in analytical methodology, instrumentation, computation and interpretation. Submissions on novel applications focusing on drug purity and stability studies, pharmacokinetics, therapeutic monitoring, metabolic profiling; drug-related aspects of analytical biochemistry and forensic toxicology; quality assurance in the pharmaceutical industry are also welcome. Studies from areas of well established and poorly selective methods, such as UV-VIS spectrophotometry (including derivative and multi-wavelength measurements), basic electroanalytical (potentiometric, polarographic and voltammetric) methods, fluorimetry, flow-injection analysis, etc. are accepted for publication in exceptional cases only, if a unique and substantial advantage over presently known systems is demonstrated. The same applies to the assay of simple drug formulations by any kind of methods and the determination of drugs in biological samples based merely on spiked samples. Drug purity/stability studies should contain information on the structure elucidation of the impurities/degradants.
期刊最新文献
Comprehensive pharmacokinetic profiling of twelve compounds from Phellinus Igniarius extract in rats by UHPLC-MS/MS. Dispersive microextraction techniques as efficient strategies for the analysis of saliva: A comprehensive review. Identification and quality control of isomers in Huo-Xiang-Zheng-Qi Mixture using ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry and inductive effects analysis. Strategies for automated affinity purification-resin screening for non-traditional biopharmaceuticals in the discovery space. Diazonium-based derivatization for enhanced detection of phosphorylated metabolites by LC-MS in cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1