Evaluation of the effects of fenestration in Fontan circulation using a lumped parameter model.

IF 2.6 4区 医学 Q2 PHYSIOLOGY Journal of Physiological Sciences Pub Date : 2024-12-21 DOI:10.1186/s12576-024-00947-y
Naohiro Horio, Shuji Shimizu, Yasuhiro Kotani, Yoshinori Miyahara, Shingo Kasahara
{"title":"Evaluation of the effects of fenestration in Fontan circulation using a lumped parameter model.","authors":"Naohiro Horio, Shuji Shimizu, Yasuhiro Kotani, Yoshinori Miyahara, Shingo Kasahara","doi":"10.1186/s12576-024-00947-y","DOIUrl":null,"url":null,"abstract":"<p><p>Fenestration has been reported to enhance Fontan hemodynamics in several cases of Fontan circulation. However, the indication criteria for fenestration remain under discussion. To assess the effectiveness of fenestration in Fontan circulation, we conducted a theoretical analysis using a computational model of the fenestrated Fontan circulation. The cardiac chambers and vascular systems were modeled using the time-varying elastance model and the modified Windkessel model, respectively. When the pulmonary vascular resistance index was 4.01 Wood units m<sup>2</sup>, fenestration significantly reduced central venous pressure from 18.0 to 16.1 mmHg and decreased stressed blood volume from 610 to 555 ml. However, in the models with reduced ventricular end-systolic elastance, increased ventricular stiffness constant, or heightened systemic vascular resistance, the advantages of fenestration were diminished. Thus, fenestration may effectively improve the hemodynamics of Fontan circulation in patients with elevated pulmonary vascular resistance.</p>","PeriodicalId":16832,"journal":{"name":"Journal of Physiological Sciences","volume":"74 1","pages":"58"},"PeriodicalIF":2.6000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11662634/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physiological Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12576-024-00947-y","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Fenestration has been reported to enhance Fontan hemodynamics in several cases of Fontan circulation. However, the indication criteria for fenestration remain under discussion. To assess the effectiveness of fenestration in Fontan circulation, we conducted a theoretical analysis using a computational model of the fenestrated Fontan circulation. The cardiac chambers and vascular systems were modeled using the time-varying elastance model and the modified Windkessel model, respectively. When the pulmonary vascular resistance index was 4.01 Wood units m2, fenestration significantly reduced central venous pressure from 18.0 to 16.1 mmHg and decreased stressed blood volume from 610 to 555 ml. However, in the models with reduced ventricular end-systolic elastance, increased ventricular stiffness constant, or heightened systemic vascular resistance, the advantages of fenestration were diminished. Thus, fenestration may effectively improve the hemodynamics of Fontan circulation in patients with elevated pulmonary vascular resistance.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用集总参数模型评价开窗对方潭循环的影响。
据报道,在一些方丹循环病例中,开窗可增强方丹血液动力学。然而,开窗的指征标准仍在讨论中。为了评估开窗在方滩环流中的有效性,我们使用开窗方滩环流的计算模型进行了理论分析。心室和血管系统分别采用时变弹性模型和改进的Windkessel模型进行建模。当肺血管阻力指数为4.01木单位m2时,开窗使中心静脉压从18.0降至16.1 mmHg,使应激血容量从610降至555 ml。然而,在心室收缩末期弹性降低、心室刚度常数升高或全身血管阻力升高的模型中,开窗的优势减弱。因此,开窗可有效改善肺血管阻力升高患者的方丹循环血流动力学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.40
自引率
4.30%
发文量
27
审稿时长
6-12 weeks
期刊介绍: The Journal of Physiological Sciences publishes peer-reviewed original papers, reviews, short communications, technical notes, and letters to the editor, based on the principles and theories of modern physiology and addressed to the international scientific community. All fields of physiology are covered, encompassing molecular, cellular and systems physiology. The emphasis is on human and vertebrate physiology, but comparative papers are also considered. The process of obtaining results must be ethically sound. Fields covered: Adaptation and environment Autonomic nervous function Biophysics Cell sensors and signaling Central nervous system and brain sciences Endocrinology and metabolism Excitable membranes and neural cell physiology Exercise physiology Gastrointestinal and kidney physiology Heart and circulatory physiology Molecular and cellular physiology Muscle physiology Physiome/systems biology Respiration physiology Senses.
期刊最新文献
TRPV1 and thermosensitivity. Thermosensitive TRPM2: The regulatory mechanisms of its temperature sensitivity and physiological functions. The difference in arterial baroreflex sensitivity between the supine and standing positions in healthy subjects. TRPV3 in skin thermosensation and temperature responses. The interaction between orexin, sleep deprivation and Alzheimer's disease: Unveiling an Emerging Connection.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1