Short-chain fatty acids as a novel intervention for high-fat diet-induced metabolic syndrome.

IF 3.5 2区 生物学 Q3 CELL BIOLOGY Molecular and Cellular Biochemistry Pub Date : 2024-12-21 DOI:10.1007/s11010-024-05185-9
Tanvi Sharma, Pavitra Ranawat, Ayushi Garg, Pulkit Rastogi, Naveen Kaushal
{"title":"Short-chain fatty acids as a novel intervention for high-fat diet-induced metabolic syndrome.","authors":"Tanvi Sharma, Pavitra Ranawat, Ayushi Garg, Pulkit Rastogi, Naveen Kaushal","doi":"10.1007/s11010-024-05185-9","DOIUrl":null,"url":null,"abstract":"<p><p>Metabolic syndrome (MetS) is driven by a complex interplay of genetic, lifestyle, and dietary factors, leading to weight gain, insulin resistance, dyslipidemia, and chronic inflammation. Gut microbiota dysbiosis has been recently recognized as a key contributor to MetS, leading to advancements in gut microbiome-based interventions to improve health outcomes. Considering the unique challenges associated with the use of pre/probiotics, short-chain fatty acids (SCFA), also known as postbiotics, have emerged as promising therapeutic agents due to their role in modulating host metabolism and physiology. Considering this, the aim of the current study was to explore the therapeutic potential of SCFA (butyrate, propionate, and acetate) supplementation against a high-fat diet (HFD)-induced experimental model of MetS in male Wistar rats. Alterations in body weight, lipid profile, histopathology, and adipose tissue accumulation were assessed to establish SCFA-mediated amelioration of experimental MetS. Further, the enzymatic (GPx, Catalase, GR, and GST) and non-enzymatic (LPO, total ROS, and Redox ratio were evaluated. The results indicated that SCFA supplementation could effectively mitigate key features of MetS. A significant reduction in body weight gain and fasting blood glucose levels, along with markedly lowered triglycerides, total cholesterol, and LDL levels, with partial restoration of HDL levels was observed following SCFA supplementation. SCFA administration also attenuated MetS-associated hepatic damage as studied by histopathological investigation and analysis of liver function marker enzyme activities. Such ameliorative effects of SCFA against HFD-induced MetS were owed to potential redox modulation studied using enzymatic and non-enzymatic oxidative stress markers. In conclusion, the study's outcomes show that SCFA supplementation could potentially be used against managing MetS. It underscores the therapeutic potential of SCFA by placing them as a novel gut microbiome-based dietary approach to improve metabolic health and reduce the risk of MetS-associated complications. However, more detailed mechanistic explorations are warranted in the future, leading to their beneficial role in MetS contributing to holistic health outcomes.</p>","PeriodicalId":18724,"journal":{"name":"Molecular and Cellular Biochemistry","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and Cellular Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11010-024-05185-9","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Metabolic syndrome (MetS) is driven by a complex interplay of genetic, lifestyle, and dietary factors, leading to weight gain, insulin resistance, dyslipidemia, and chronic inflammation. Gut microbiota dysbiosis has been recently recognized as a key contributor to MetS, leading to advancements in gut microbiome-based interventions to improve health outcomes. Considering the unique challenges associated with the use of pre/probiotics, short-chain fatty acids (SCFA), also known as postbiotics, have emerged as promising therapeutic agents due to their role in modulating host metabolism and physiology. Considering this, the aim of the current study was to explore the therapeutic potential of SCFA (butyrate, propionate, and acetate) supplementation against a high-fat diet (HFD)-induced experimental model of MetS in male Wistar rats. Alterations in body weight, lipid profile, histopathology, and adipose tissue accumulation were assessed to establish SCFA-mediated amelioration of experimental MetS. Further, the enzymatic (GPx, Catalase, GR, and GST) and non-enzymatic (LPO, total ROS, and Redox ratio were evaluated. The results indicated that SCFA supplementation could effectively mitigate key features of MetS. A significant reduction in body weight gain and fasting blood glucose levels, along with markedly lowered triglycerides, total cholesterol, and LDL levels, with partial restoration of HDL levels was observed following SCFA supplementation. SCFA administration also attenuated MetS-associated hepatic damage as studied by histopathological investigation and analysis of liver function marker enzyme activities. Such ameliorative effects of SCFA against HFD-induced MetS were owed to potential redox modulation studied using enzymatic and non-enzymatic oxidative stress markers. In conclusion, the study's outcomes show that SCFA supplementation could potentially be used against managing MetS. It underscores the therapeutic potential of SCFA by placing them as a novel gut microbiome-based dietary approach to improve metabolic health and reduce the risk of MetS-associated complications. However, more detailed mechanistic explorations are warranted in the future, leading to their beneficial role in MetS contributing to holistic health outcomes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
短链脂肪酸作为高脂肪饮食诱导代谢综合征的新干预手段。
代谢综合征(MetS)是由遗传、生活方式和饮食因素的复杂相互作用驱动的,可导致体重增加、胰岛素抵抗、血脂异常和慢性炎症。肠道菌群失调最近被认为是MetS的关键因素,导致基于肠道菌群的干预措施取得进展,以改善健康结果。考虑到与益生菌前/益生菌使用相关的独特挑战,短链脂肪酸(SCFA),也称为后益生菌,由于其调节宿主代谢和生理的作用,已成为有前途的治疗药物。考虑到这一点,本研究的目的是探索补充SCFA(丁酸盐、丙酸盐和醋酸盐)对高脂肪饮食(HFD)诱导的雄性Wistar大鼠MetS实验模型的治疗潜力。评估体重、脂质谱、组织病理学和脂肪组织积累的变化,以确定scfa介导的实验性MetS改善。进一步,评估酶(GPx、过氧化氢酶、GR和GST)和非酶(LPO、总ROS和氧化还原比)。结果表明,补充SCFA可以有效减轻MetS的关键特征。补充SCFA后,体重增加和空腹血糖水平显著降低,甘油三酯、总胆固醇和低密度脂蛋白水平显著降低,HDL水平部分恢复。通过组织病理学调查和肝功能标记酶活性分析,SCFA也减轻了met相关的肝损伤。SCFA对hfd诱导的MetS的改善作用是由于使用酶和非酶氧化应激标记物研究了潜在的氧化还原调节。总之,该研究的结果表明,补充SCFA可能用于治疗MetS。它强调了SCFA的治疗潜力,将其作为一种新的基于肠道微生物组的饮食方法来改善代谢健康并降低met相关并发症的风险。然而,未来有必要进行更详细的机制探索,以确定它们在MetS中对整体健康结果的有益作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular and Cellular Biochemistry
Molecular and Cellular Biochemistry 生物-细胞生物学
CiteScore
8.30
自引率
2.30%
发文量
293
审稿时长
1.7 months
期刊介绍: Molecular and Cellular Biochemistry: An International Journal for Chemical Biology in Health and Disease publishes original research papers and short communications in all areas of the biochemical sciences, emphasizing novel findings relevant to the biochemical basis of cellular function and disease processes, as well as the mechanics of action of hormones and chemical agents. Coverage includes membrane transport, receptor mechanism, immune response, secretory processes, and cytoskeletal function, as well as biochemical structure-function relationships in the cell. In addition to the reports of original research, the journal publishes state of the art reviews. Specific subjects covered by Molecular and Cellular Biochemistry include cellular metabolism, cellular pathophysiology, enzymology, ion transport, lipid biochemistry, membrane biochemistry, molecular biology, nuclear structure and function, and protein chemistry.
期刊最新文献
Exploring ferroptosis and miRNAs: implications for cancer modulation and therapy. Acid sphingomyelinase downregulation alleviates diabetic myocardial fibrosis in mice. METTL3: a multifunctional regulator in diseases. Correction to: Macrophage energy metabolism in cardiometabolic disease. The bone-vascular axis: the link between osteoporosis and vascular calcification.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1