Acid sphingomyelinase downregulation alleviates diabetic myocardial fibrosis in mice.

IF 3.5 2区 生物学 Q3 CELL BIOLOGY Molecular and Cellular Biochemistry Pub Date : 2025-01-24 DOI:10.1007/s11010-025-05206-1
Changnong Chen, Yang Ji, Hao Liu, Lihua Pang, Jing Chen, Huanzhen Chen, Yujie Yao, Jinhao Ye, Sha Wang, Shiming Liu, Yun Zhong
{"title":"Acid sphingomyelinase downregulation alleviates diabetic myocardial fibrosis in mice.","authors":"Changnong Chen, Yang Ji, Hao Liu, Lihua Pang, Jing Chen, Huanzhen Chen, Yujie Yao, Jinhao Ye, Sha Wang, Shiming Liu, Yun Zhong","doi":"10.1007/s11010-025-05206-1","DOIUrl":null,"url":null,"abstract":"<p><p>Increased activity of acid sphingomyelinase (ASMase) has been linked to diabetes and organ fibrosis. Nevertheless, the precise influence of ASMase on diabetic myocardial fibrosis and the corresponding molecular mechanisms remain elusive. In this study, we aim to elucidate whether ASMase contributes to diabetic myocardial fibrosis through the phosphorylation mediated by MAPK, thereby culminating in the development of diabetic cardiomyopathy (DCM). In vitro experiments utilized cardiac fibroblasts (CFs) isolated from wild-type mice (WT). For in vivo studies, ASMase knockout mice were generated through TALEN gene editing technology. Additionally, a diabetes mellitus model was established by intraperitoneal injection of Streptozotocin (STZ), involving both ASMase knockdown mice (ASMase<sup>+/-</sup>-STZ) and WT mice. CFs were subjected to incubation with amitriptyline (AMP) (2.5 μM), advanced glycation end products (AGEs), and small interfering RNA (siRNA) over a duration of 24 h. Experimental assessments encompassed EdU incorporation, transwell assays, and fluorescence staining, aimed at elucidating the functional characteristics of cardiac fibroblasts. The quantification of collagen I, phosphorylated MAPK levels within both cellular and murine cardiac contexts was accomplished through Western blot analysis. In the ASMase<sup>±</sup>-STZ group, mice exhibited attenuated myocardial fibrosis and ameliorated cardiac diastolic function in comparison to the WT-STZ group. Furthermore, treatment of CFs with AMP and siRNA demonstrated a suppressive effect on the proliferation and fibrotic expression induced by AGEs in CFs. Our investigation unveiled that ASMase modulates myocardial fibrosis through the TGF-β-Smad3 and MAPK pathways, elucidating the intricate molecular mechanisms underlying the observed effects. Our findings indicate that ASMase plays a vital role in myocardial fibrosis in DCM, providing a foundation for developing new therapeutic strategies for the prevention and control of DCM.</p>","PeriodicalId":18724,"journal":{"name":"Molecular and Cellular Biochemistry","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and Cellular Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11010-025-05206-1","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Increased activity of acid sphingomyelinase (ASMase) has been linked to diabetes and organ fibrosis. Nevertheless, the precise influence of ASMase on diabetic myocardial fibrosis and the corresponding molecular mechanisms remain elusive. In this study, we aim to elucidate whether ASMase contributes to diabetic myocardial fibrosis through the phosphorylation mediated by MAPK, thereby culminating in the development of diabetic cardiomyopathy (DCM). In vitro experiments utilized cardiac fibroblasts (CFs) isolated from wild-type mice (WT). For in vivo studies, ASMase knockout mice were generated through TALEN gene editing technology. Additionally, a diabetes mellitus model was established by intraperitoneal injection of Streptozotocin (STZ), involving both ASMase knockdown mice (ASMase+/--STZ) and WT mice. CFs were subjected to incubation with amitriptyline (AMP) (2.5 μM), advanced glycation end products (AGEs), and small interfering RNA (siRNA) over a duration of 24 h. Experimental assessments encompassed EdU incorporation, transwell assays, and fluorescence staining, aimed at elucidating the functional characteristics of cardiac fibroblasts. The quantification of collagen I, phosphorylated MAPK levels within both cellular and murine cardiac contexts was accomplished through Western blot analysis. In the ASMase±-STZ group, mice exhibited attenuated myocardial fibrosis and ameliorated cardiac diastolic function in comparison to the WT-STZ group. Furthermore, treatment of CFs with AMP and siRNA demonstrated a suppressive effect on the proliferation and fibrotic expression induced by AGEs in CFs. Our investigation unveiled that ASMase modulates myocardial fibrosis through the TGF-β-Smad3 and MAPK pathways, elucidating the intricate molecular mechanisms underlying the observed effects. Our findings indicate that ASMase plays a vital role in myocardial fibrosis in DCM, providing a foundation for developing new therapeutic strategies for the prevention and control of DCM.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular and Cellular Biochemistry
Molecular and Cellular Biochemistry 生物-细胞生物学
CiteScore
8.30
自引率
2.30%
发文量
293
审稿时长
1.7 months
期刊介绍: Molecular and Cellular Biochemistry: An International Journal for Chemical Biology in Health and Disease publishes original research papers and short communications in all areas of the biochemical sciences, emphasizing novel findings relevant to the biochemical basis of cellular function and disease processes, as well as the mechanics of action of hormones and chemical agents. Coverage includes membrane transport, receptor mechanism, immune response, secretory processes, and cytoskeletal function, as well as biochemical structure-function relationships in the cell. In addition to the reports of original research, the journal publishes state of the art reviews. Specific subjects covered by Molecular and Cellular Biochemistry include cellular metabolism, cellular pathophysiology, enzymology, ion transport, lipid biochemistry, membrane biochemistry, molecular biology, nuclear structure and function, and protein chemistry.
期刊最新文献
Exploring ferroptosis and miRNAs: implications for cancer modulation and therapy. Acid sphingomyelinase downregulation alleviates diabetic myocardial fibrosis in mice. METTL3: a multifunctional regulator in diseases. Correction to: Macrophage energy metabolism in cardiometabolic disease. The bone-vascular axis: the link between osteoporosis and vascular calcification.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1