sp Carbon Disrupting Axial Symmetry of Local Electric Field for Biomimetic Construction of Three-Dimensional Geometric and Electronic Structure in Nanozyme.
Yujian Sun, Chenguang Wang, Haoxin Li, Kai Wang, Qiang Bai, Guoli Zhang, Shuishui Feng, Lina Wang, Zhiling Zhu, Ning Sui
{"title":"sp Carbon Disrupting Axial Symmetry of Local Electric Field for Biomimetic Construction of Three-Dimensional Geometric and Electronic Structure in Nanozyme.","authors":"Yujian Sun, Chenguang Wang, Haoxin Li, Kai Wang, Qiang Bai, Guoli Zhang, Shuishui Feng, Lina Wang, Zhiling Zhu, Ning Sui","doi":"10.1002/anie.202418707","DOIUrl":null,"url":null,"abstract":"<p><p>The catalytic efficiency of natural enzymes depends on the precise electronic interactions between active centers and cofactors within a three-dimensional (3D) structure. Single-atom nanozymes (SAzymes) attempt to mimic this structure by modifying metal active sites with molecular ligands. However, SAzymes struggle to match the catalytic efficiency of natural enzymes due to constraints in active site proximity, quantity, and the inability to simulate electron transfer processes driven by internal electronic structures of natural enzymes. This study introduces a universal spatial engineering strategy in which molecular ligands are replaced with graphdiyne (GDY) to induce d-π orbital hybridization with copper nanoparticles (Cu NPs), leading to an asymmetric electron-rich distribution along the longitudinal axis that mimics the local electric field of natural laccase. Moreover, multiple sp bonds within GDY scaffold effectively anchor Cu NPs, facilitating the construction of 3D geometric structure similar to that of natural laccase. An enzymatic activity of 82.53 U mg⁻1 is achieved, 4.72 times higher than that of natural laccase. By reconstructing both 3D structures and local electric fields of natural enzymes through d-π orbital hybridization, this approach enhances electron interactions between cofactors, active centers, and substrates, and offers a versatile framework for biomimetic design of nanozymes.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":" ","pages":"e202418707"},"PeriodicalIF":16.1000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202418707","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The catalytic efficiency of natural enzymes depends on the precise electronic interactions between active centers and cofactors within a three-dimensional (3D) structure. Single-atom nanozymes (SAzymes) attempt to mimic this structure by modifying metal active sites with molecular ligands. However, SAzymes struggle to match the catalytic efficiency of natural enzymes due to constraints in active site proximity, quantity, and the inability to simulate electron transfer processes driven by internal electronic structures of natural enzymes. This study introduces a universal spatial engineering strategy in which molecular ligands are replaced with graphdiyne (GDY) to induce d-π orbital hybridization with copper nanoparticles (Cu NPs), leading to an asymmetric electron-rich distribution along the longitudinal axis that mimics the local electric field of natural laccase. Moreover, multiple sp bonds within GDY scaffold effectively anchor Cu NPs, facilitating the construction of 3D geometric structure similar to that of natural laccase. An enzymatic activity of 82.53 U mg⁻1 is achieved, 4.72 times higher than that of natural laccase. By reconstructing both 3D structures and local electric fields of natural enzymes through d-π orbital hybridization, this approach enhances electron interactions between cofactors, active centers, and substrates, and offers a versatile framework for biomimetic design of nanozymes.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.