Zebrafish Dark-Dependent Behavior Requires Phototransduction by the Pineal Gland

IF 8.3 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Journal of Pineal Research Pub Date : 2024-12-23 DOI:10.1111/jpi.70021
Yair Wexler, Dengfeng Huang, Adar Medvetzky, Daniel Armbruster, Wolfgang Driever, Jun Yan, Yoav Gothilf
{"title":"Zebrafish Dark-Dependent Behavior Requires Phototransduction by the Pineal Gland","authors":"Yair Wexler,&nbsp;Dengfeng Huang,&nbsp;Adar Medvetzky,&nbsp;Daniel Armbruster,&nbsp;Wolfgang Driever,&nbsp;Jun Yan,&nbsp;Yoav Gothilf","doi":"10.1111/jpi.70021","DOIUrl":null,"url":null,"abstract":"<p>Located dorsally underneath a thin translucent skull in many teleosts, the pineal gland is a photoreceptive organ known as a key element of the circadian clock system. Nevertheless, the presence of additional routes of photoreception presents a challenge in determining its specific roles in regulating photic-related behavior. Here, we show the importance of the pineal gland in mediating a prolonged motor response of zebrafish larvae to sudden darkness, both as a photodetector and as a circadian pacemaker. This was evident by a reduced motor response of Bsx-deficient larvae, lacking a pineal gland, to sudden darkness. Moreover, the typical daily rhythm of the intensity of this response was lost in the pineal-less larvae. In contrast, motor response to a sudden increase in illumination was unaffected. Furthermore, we show that the pineal-mediated behavioral response to darkness requires two elements: the photoreceptor cells and the projecting neurons. Dark response was impaired in larvae whose pineal photoreceptor cells were genetically ablated and in larvae whose pineal projecting neurons had undergone laser-axotomy. This study thus establishes the pineal gland as a mediator of dark-dependent behavior and reveals underlying cellular components involved in transducing information about darkness to the brain.</p>","PeriodicalId":198,"journal":{"name":"Journal of Pineal Research","volume":"76 8","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11664460/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pineal Research","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jpi.70021","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

Located dorsally underneath a thin translucent skull in many teleosts, the pineal gland is a photoreceptive organ known as a key element of the circadian clock system. Nevertheless, the presence of additional routes of photoreception presents a challenge in determining its specific roles in regulating photic-related behavior. Here, we show the importance of the pineal gland in mediating a prolonged motor response of zebrafish larvae to sudden darkness, both as a photodetector and as a circadian pacemaker. This was evident by a reduced motor response of Bsx-deficient larvae, lacking a pineal gland, to sudden darkness. Moreover, the typical daily rhythm of the intensity of this response was lost in the pineal-less larvae. In contrast, motor response to a sudden increase in illumination was unaffected. Furthermore, we show that the pineal-mediated behavioral response to darkness requires two elements: the photoreceptor cells and the projecting neurons. Dark response was impaired in larvae whose pineal photoreceptor cells were genetically ablated and in larvae whose pineal projecting neurons had undergone laser-axotomy. This study thus establishes the pineal gland as a mediator of dark-dependent behavior and reveals underlying cellular components involved in transducing information about darkness to the brain.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
斑马鱼依赖黑暗的行为需要松果体的光传导。
松果体位于许多硬骨鱼薄而半透明的头骨的背侧,是一种光接受器官,被称为昼夜节律系统的关键元素。然而,在确定其在调节光相关行为中的具体作用方面,其他光接受途径的存在提出了一个挑战。在这里,我们展示了松果体作为光探测器和昼夜节律起搏器,在调解斑马鱼幼体对突然黑暗的长时间运动反应中的重要性。缺乏bsx的幼虫缺乏松果体,对突然的黑暗的运动反应降低,这一点很明显。此外,这种反应强度的典型的每日节奏在无松果体的幼虫中消失了。相反,对突然增加的光照的运动反应不受影响。此外,我们表明松果体介导的对黑暗的行为反应需要两个元素:光感受器细胞和投射神经元。在松果体光感受器细胞被基因切除的幼虫和松果体突出神经元被激光切除的幼虫中,暗反应受损。因此,本研究确立了松果体作为黑暗依赖行为的中介,并揭示了将黑暗信息传递给大脑的潜在细胞成分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Pineal Research
Journal of Pineal Research 医学-内分泌学与代谢
CiteScore
17.70
自引率
4.90%
发文量
66
审稿时长
1 months
期刊介绍: The Journal of Pineal Research welcomes original scientific research on the pineal gland and melatonin in vertebrates, as well as the biological functions of melatonin in non-vertebrates, plants, and microorganisms. Criteria for publication include scientific importance, novelty, timeliness, and clarity of presentation. The journal considers experimental data that challenge current thinking and welcomes case reports contributing to understanding the pineal gland and melatonin research. Its aim is to serve researchers in all disciplines related to the pineal gland and melatonin.
期刊最新文献
Diurnal Variation in Melatonin-Mediated Cardiac Protection via Per2 Expression in Heart Multi-Omics Analysis Reveals That AhNHL Contributes to Melatonin-Mediated Cadmium Tolerance in Peanut Plants Meditation Linked to Enhanced MRI Signal Intensity in the Pineal Gland and Reduced Predicted Brain Age Issue Information Mechanism of Exogenous Melatonin to Alleviate the Fermentation Performance of Saccharomyces cerevisiae Under Copper Stress
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1