Strong and Tough Self-Healing Elastomers via BTA-Mediated Microstructure and Metal-ligand Coordination.

IF 4.2 3区 化学 Q2 POLYMER SCIENCE Macromolecular Rapid Communications Pub Date : 2024-12-23 DOI:10.1002/marc.202400913
Xinyi Huang, Yundong Lai, Haonan Li, Yuanxin He, Lingna Wang, Haoran Zhang, Yongfeng Xu, Qiuyu Zhang, Chunmei Li
{"title":"Strong and Tough Self-Healing Elastomers via BTA-Mediated Microstructure and Metal-ligand Coordination.","authors":"Xinyi Huang, Yundong Lai, Haonan Li, Yuanxin He, Lingna Wang, Haoran Zhang, Yongfeng Xu, Qiuyu Zhang, Chunmei Li","doi":"10.1002/marc.202400913","DOIUrl":null,"url":null,"abstract":"<p><p>Creating elastomers with high strength, toughness, and rapid self-healing remains a key challenge. These seemingly contradictory properties require innovative design strategies. Herein, a novel approach is proposed by simultaneously incorporating a unique triple hydrogen bond unit, benzene-1,3,5-tricarboxamide (BTA), and imidazole-Zn<sup>2+</sup> dynamic coordination into the elastomer. The BTA forms rigid fibers through self-assembly via triple hydrogen bonding, inducing microphase separation that significantly enhances the material's properties. Hydrogen bonds and coordination interactions provide dynamic reversibility and self-healing, achieving a balance of strength, toughness, and healing capabilities. By varying the BTA content and the degree of coordination crosslinking, the elastomer's strength is tunable within 8.79-2.03 MPa, and it boasts an impressive elongation at a break of up to 700%. Remarkably, it recovers 94.6% of its strength after being cut in half, facilitated by treatment with DMF at 70 °C for 24 h. Furthermore, the integration of carbon nanotubes endows the material with resistance-sensing, enabling real-time monitoring of human movements. Overall, this study lays a theoretical foundation and introduces innovative concepts for the development of high-toughness self-healing elastomers.</p>","PeriodicalId":205,"journal":{"name":"Macromolecular Rapid Communications","volume":" ","pages":"e2400913"},"PeriodicalIF":4.2000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Rapid Communications","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/marc.202400913","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Creating elastomers with high strength, toughness, and rapid self-healing remains a key challenge. These seemingly contradictory properties require innovative design strategies. Herein, a novel approach is proposed by simultaneously incorporating a unique triple hydrogen bond unit, benzene-1,3,5-tricarboxamide (BTA), and imidazole-Zn2+ dynamic coordination into the elastomer. The BTA forms rigid fibers through self-assembly via triple hydrogen bonding, inducing microphase separation that significantly enhances the material's properties. Hydrogen bonds and coordination interactions provide dynamic reversibility and self-healing, achieving a balance of strength, toughness, and healing capabilities. By varying the BTA content and the degree of coordination crosslinking, the elastomer's strength is tunable within 8.79-2.03 MPa, and it boasts an impressive elongation at a break of up to 700%. Remarkably, it recovers 94.6% of its strength after being cut in half, facilitated by treatment with DMF at 70 °C for 24 h. Furthermore, the integration of carbon nanotubes endows the material with resistance-sensing, enabling real-time monitoring of human movements. Overall, this study lays a theoretical foundation and introduces innovative concepts for the development of high-toughness self-healing elastomers.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于bta结构和金属配位的强韧自愈弹性体。
制造具有高强度、韧性和快速自愈性的弹性体仍然是一个关键的挑战。这些看似矛盾的属性需要创新的设计策略。本文提出了一种新颖的方法,即在弹性体中同时加入独特的三氢键单元,苯-1,3,5-三羧基酰胺(BTA)和咪唑- zn2 +动态配位。BTA通过三氢键自组装形成刚性纤维,诱导微相分离,显著提高了材料的性能。氢键和配位相互作用提供了动态可逆性和自愈性,实现了强度、韧性和愈合能力的平衡。通过改变BTA含量和配位交联程度,弹性体的强度在8.79-2.03 MPa之间可调,并且具有令人印象深刻的断裂伸长率高达700%。值得注意的是,在DMF在70°C下处理24小时后,它在被切成一半后恢复了94.6%的强度。此外,碳纳米管的集成使材料具有电阻传感功能,能够实时监测人体运动。总体而言,本研究为高韧性自愈弹性体的发展奠定了理论基础,并引入了创新的概念。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Macromolecular Rapid Communications
Macromolecular Rapid Communications 工程技术-高分子科学
CiteScore
7.70
自引率
6.50%
发文量
477
审稿时长
1.4 months
期刊介绍: Macromolecular Rapid Communications publishes original research in polymer science, ranging from chemistry and physics of polymers to polymers in materials science and life sciences.
期刊最新文献
Electrospinning Using AC Electric Fields. Kumada-Tamao Catalyst-Transfer Condensation Polymerization of AB2 Monomer: Synthesis of Well-Defined Hyperbranched Poly(thienylene-phenylene). Nanochitin From Crab Shells: Production, Chemical Modification, Composite Materials, and Physiological Functions. Partially Degradable N-Type Conjugated Random Copolymers for Intrinsically Stretchable Organic Field-Effect Transistors. Recent Progress in Polymer Gel-Based Ionic Thermoelectric Devices: Materials, Methods, and Perspectives.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1