{"title":"Nanochitin From Crab Shells: Production, Chemical Modification, Composite Materials, and Physiological Functions.","authors":"Shinsuke Ifuku, Hironori Kaminaka, Md Iftekhar Shams","doi":"10.1002/marc.202400765","DOIUrl":null,"url":null,"abstract":"<p><p>Large quantities of crab shells are generated in food-processing plants. In this review, the authors summarize a series of research findings on the production of nanochitin, its physical properties, chemical modifications, and functions, which have not been fully addressed in existing literature. Nanochitin, which has a width of 10 nm, is derived from chitin, the main component of crab shells, using a technology similar to that used to produce nanocellulose from wood. Unlike conventional chitin, nanochitin is well dispersed in water, making it easy to mold and process into various products for different applications. They can also be modified for specific uses through processes such as acylation and etherification to enhance their physical properties and add functionality. Nanochitin, which are known for their exceptional mechanical strength, can be blended with resins to create composite films with improved strength and elasticity. These films maintain the transparency of the resin, reduce its thermal expansion, and offer reinforcement. Chitin and its derivative chitosan are used as wound dressings, hemostatic agents, and health foods. Nanochitin and its deacetyl derivatives have diverse functions such as topical medicine for the skin, ingestion as a health food, and use as pesticides or fertilizers for plants.</p>","PeriodicalId":205,"journal":{"name":"Macromolecular Rapid Communications","volume":" ","pages":"e2400765"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Rapid Communications","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/marc.202400765","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Large quantities of crab shells are generated in food-processing plants. In this review, the authors summarize a series of research findings on the production of nanochitin, its physical properties, chemical modifications, and functions, which have not been fully addressed in existing literature. Nanochitin, which has a width of 10 nm, is derived from chitin, the main component of crab shells, using a technology similar to that used to produce nanocellulose from wood. Unlike conventional chitin, nanochitin is well dispersed in water, making it easy to mold and process into various products for different applications. They can also be modified for specific uses through processes such as acylation and etherification to enhance their physical properties and add functionality. Nanochitin, which are known for their exceptional mechanical strength, can be blended with resins to create composite films with improved strength and elasticity. These films maintain the transparency of the resin, reduce its thermal expansion, and offer reinforcement. Chitin and its derivative chitosan are used as wound dressings, hemostatic agents, and health foods. Nanochitin and its deacetyl derivatives have diverse functions such as topical medicine for the skin, ingestion as a health food, and use as pesticides or fertilizers for plants.
期刊介绍:
Macromolecular Rapid Communications publishes original research in polymer science, ranging from chemistry and physics of polymers to polymers in materials science and life sciences.