Positive regulation of a LuxR family protein, MilO, in mildiomycin biosynthesis.

IF 3.9 2区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Applied and Environmental Microbiology Pub Date : 2024-12-23 DOI:10.1128/aem.01654-24
Zhiyu Li, Yuli Wang, Chen Lin, Yu Wen, Zixin Deng, Ming Jiang, Xinyi He
{"title":"Positive regulation of a LuxR family protein, MilO, in mildiomycin biosynthesis.","authors":"Zhiyu Li, Yuli Wang, Chen Lin, Yu Wen, Zixin Deng, Ming Jiang, Xinyi He","doi":"10.1128/aem.01654-24","DOIUrl":null,"url":null,"abstract":"<p><p>Mildiomycin is a representative peptidyl nucleoside antibiotic and was first isolated from <i>Streptoverticillium rimofaciens</i>, which has been used as an important biological agent to control powdery mildew in plants. Despite its importance, the biosynthetic pathways and regulatory mechanisms remain to be fully elucidated. In this study, we identified MilO as a positive pathway-specific regulator of mildiomycin biosynthesis in the heterologous host <i>Streptomyces avermitilis</i>. Gene disruption of <i>milO</i> resulted in almost loss of mildiomycin production, and it was restored to the level comparable to that in the wild-type strain in complemented strain. Overexpression of <i>milO</i> using host native promoter <i>rpsJ</i>p, engineered promotor <i>SP44,</i> and <i>kasO</i>p* led to a 50%, 6.5-fold, and 9.2-fold increase in mildiomycin production compared with the wild-type strain, respectively. Quantitative real-time PCR and electrophoretic mobility shift assay (EMSA) experiments revealed that MilO directly enhances the transcription of the <i>milA</i> gene by 20 folds after 48 h fermentation and indirectly regulates the transcription levels of other genes from <i>milB</i> to <i>milM</i>. Using DNase I footprinting assays, <i>milO</i> was revealed to bind to a 44 bp DNA sequence of the <i>milA</i> promoter region. The binding region consists of three imperfect direct repeats of TGTC(N)<sub>3</sub>CGGT separated by two-nucleotide spacers and each repeat is important to efficient binding to MilO. In addition, we identified two related compounds by overexpressing <i>milO</i> in a structural gene <i>milN</i>-deficient mutant. Taken together, this study indicates that pathway-specific regulator MilO is essential for mildiomycin biosynthesis and provides an effective strategy to improve the production of mildiomycin and its intermediates.IMPORTANCEAs an important biological agent to control powdery mildew on plants, mildiomycin has been commercialized and used in various plants. However, its regulatory mechanisms and biosynthetic pathways remain unknown. This study provides new insights into the regulation of mildiomycin biosynthesis through MilO, a LuxR family protein that modulates mildiomycin production by directly enhancing the transcription of <i>milA</i>. The yield of mildiomycin was significantly improved by overexpressing <i>milO</i> in a heterologous host. In addition, the positive regulatory effect of <i>milO</i> helped to discover two related compounds, which provide important clues for the timing of uploading of two amino acid side chains during mildiomycin biosynthesis for the first time. In brief, our findings on transcriptional regulation of mildiomycin biosynthesis by <i>milO</i> will be valuable to further increase the yield of mildiomycin and explore its biosynthetic pathways.</p>","PeriodicalId":8002,"journal":{"name":"Applied and Environmental Microbiology","volume":" ","pages":"e0165424"},"PeriodicalIF":3.9000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Environmental Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/aem.01654-24","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Mildiomycin is a representative peptidyl nucleoside antibiotic and was first isolated from Streptoverticillium rimofaciens, which has been used as an important biological agent to control powdery mildew in plants. Despite its importance, the biosynthetic pathways and regulatory mechanisms remain to be fully elucidated. In this study, we identified MilO as a positive pathway-specific regulator of mildiomycin biosynthesis in the heterologous host Streptomyces avermitilis. Gene disruption of milO resulted in almost loss of mildiomycin production, and it was restored to the level comparable to that in the wild-type strain in complemented strain. Overexpression of milO using host native promoter rpsJp, engineered promotor SP44, and kasOp* led to a 50%, 6.5-fold, and 9.2-fold increase in mildiomycin production compared with the wild-type strain, respectively. Quantitative real-time PCR and electrophoretic mobility shift assay (EMSA) experiments revealed that MilO directly enhances the transcription of the milA gene by 20 folds after 48 h fermentation and indirectly regulates the transcription levels of other genes from milB to milM. Using DNase I footprinting assays, milO was revealed to bind to a 44 bp DNA sequence of the milA promoter region. The binding region consists of three imperfect direct repeats of TGTC(N)3CGGT separated by two-nucleotide spacers and each repeat is important to efficient binding to MilO. In addition, we identified two related compounds by overexpressing milO in a structural gene milN-deficient mutant. Taken together, this study indicates that pathway-specific regulator MilO is essential for mildiomycin biosynthesis and provides an effective strategy to improve the production of mildiomycin and its intermediates.IMPORTANCEAs an important biological agent to control powdery mildew on plants, mildiomycin has been commercialized and used in various plants. However, its regulatory mechanisms and biosynthetic pathways remain unknown. This study provides new insights into the regulation of mildiomycin biosynthesis through MilO, a LuxR family protein that modulates mildiomycin production by directly enhancing the transcription of milA. The yield of mildiomycin was significantly improved by overexpressing milO in a heterologous host. In addition, the positive regulatory effect of milO helped to discover two related compounds, which provide important clues for the timing of uploading of two amino acid side chains during mildiomycin biosynthesis for the first time. In brief, our findings on transcriptional regulation of mildiomycin biosynthesis by milO will be valuable to further increase the yield of mildiomycin and explore its biosynthetic pathways.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied and Environmental Microbiology
Applied and Environmental Microbiology 生物-生物工程与应用微生物
CiteScore
7.70
自引率
2.30%
发文量
730
审稿时长
1.9 months
期刊介绍: Applied and Environmental Microbiology (AEM) publishes papers that make significant contributions to (a) applied microbiology, including biotechnology, protein engineering, bioremediation, and food microbiology, (b) microbial ecology, including environmental, organismic, and genomic microbiology, and (c) interdisciplinary microbiology, including invertebrate microbiology, plant microbiology, aquatic microbiology, and geomicrobiology.
期刊最新文献
A microaerobically induced small heat shock protein contributes to Rhizobium leguminosarum/Pisum sativum symbiosis and interacts with a wide range of bacteroid proteins. Hydration conditions as a critical factor in antibiotic-mediated bacterial competition outcomes. Identification of an antibiotic from an HTS targeting EF-Tu:tRNA interaction: a prospective topical treatment for MRSA skin infections. Patterns of spontaneous and induced genomic alterations in Yarrowia lipolytica. Positive regulation of a LuxR family protein, MilO, in mildiomycin biosynthesis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1