A conceptual classification scheme of invasion science.

IF 7.6 1区 生物学 Q1 BIOLOGY BioScience Pub Date : 2024-10-26 eCollection Date: 2024-12-01 DOI:10.1093/biosci/biae093
Camille L Musseau, Maud Bernard-Verdier, Tina Heger, Leonidas H Skopeteas, David Strasiewsky, Daniel Mietchen, Jonathan M Jeschke
{"title":"A conceptual classification scheme of invasion science.","authors":"Camille L Musseau, Maud Bernard-Verdier, Tina Heger, Leonidas H Skopeteas, David Strasiewsky, Daniel Mietchen, Jonathan M Jeschke","doi":"10.1093/biosci/biae093","DOIUrl":null,"url":null,"abstract":"<p><p>In the era of big data and global biodiversity decline, there is a pressing need to transform data and information into findable and actionable knowledge. We propose a conceptual classification scheme for invasion science that goes beyond hypothesis networks and allows to organize publications and data sets, guide research directions, and identify knowledge gaps. Combining expert knowledge with literature analysis, we identified five major research themes in this field: introduction pathways, invasion success and invasibility, impacts of invasion, managing biological invasions, and meta-invasion science. We divided these themes into 10 broader research questions and linked them to 39 major hypotheses forming the theoretical foundation of invasion science. As artificial intelligence advances, such classification schemes will become important references for organizing scientific information. Our approach can be extended to other research fields, fostering cross-disciplinary connections to leverage the scientific knowledge needed to address Anthropocene challenges.</p>","PeriodicalId":9003,"journal":{"name":"BioScience","volume":"74 12","pages":"840-850"},"PeriodicalIF":7.6000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11660931/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioScience","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/biosci/biae093","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In the era of big data and global biodiversity decline, there is a pressing need to transform data and information into findable and actionable knowledge. We propose a conceptual classification scheme for invasion science that goes beyond hypothesis networks and allows to organize publications and data sets, guide research directions, and identify knowledge gaps. Combining expert knowledge with literature analysis, we identified five major research themes in this field: introduction pathways, invasion success and invasibility, impacts of invasion, managing biological invasions, and meta-invasion science. We divided these themes into 10 broader research questions and linked them to 39 major hypotheses forming the theoretical foundation of invasion science. As artificial intelligence advances, such classification schemes will become important references for organizing scientific information. Our approach can be extended to other research fields, fostering cross-disciplinary connections to leverage the scientific knowledge needed to address Anthropocene challenges.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
入侵科学的概念分类方案。
在大数据和全球生物多样性下降的时代,迫切需要将数据和信息转化为可查找和可操作的知识。我们提出了一种超越假设网络的入侵科学概念分类方案,允许组织出版物和数据集,指导研究方向,识别知识空白。结合专家知识和文献分析,我们确定了该领域的五个主要研究主题:引入途径、入侵成功和入侵性、入侵影响、生物入侵管理和元入侵科学。我们将这些主题分为10个更广泛的研究问题,并将它们与39个主要假设联系起来,形成了入侵科学的理论基础。随着人工智能的发展,这种分类方案将成为组织科学信息的重要参考。我们的方法可以扩展到其他研究领域,促进跨学科联系,以利用应对人类世挑战所需的科学知识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
BioScience
BioScience 生物-生物学
CiteScore
14.10
自引率
2.00%
发文量
109
审稿时长
3 months
期刊介绍: BioScience is a monthly journal that has been in publication since 1964. It provides readers with authoritative and current overviews of biological research. The journal is peer-reviewed and heavily cited, making it a reliable source for researchers, educators, and students. In addition to research articles, BioScience also covers topics such as biology education, public policy, history, and the fundamental principles of the biological sciences. This makes the content accessible to a wide range of readers. The journal includes professionally written feature articles that explore the latest advancements in biology. It also features discussions on professional issues, book reviews, news about the American Institute of Biological Sciences (AIBS), and columns on policy (Washington Watch) and education (Eye on Education).
期刊最新文献
A conceptual classification scheme of invasion science. Bee pollination and bee decline: A study about university students' Knowledge and its educational implication. Software codesign between end users and developers to enhance utility for biodiversity conservation. Global proliferation of nonnative plants is a major driver of insect invasions. Framing challenges and polarized issues in invasion science: toward an interdisciplinary agenda.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1