Differential learning kinetics govern the transition from memorization to generalization during in-context learning.

ArXiv Pub Date : 2024-12-12
Alex Nguyen, Gautam Reddy
{"title":"Differential learning kinetics govern the transition from memorization to generalization during in-context learning.","authors":"Alex Nguyen, Gautam Reddy","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Transformers exhibit in-context learning (ICL): the ability to use novel information presented in the context without additional weight updates. Recent work shows that ICL emerges when models are trained on a sufficiently diverse set of tasks and the transition from memorization to generalization is sharp with increasing task diversity. One interpretation is that a network's limited capacity to memorize favors generalization. Here, we examine the mechanistic underpinnings of this transition using a small transformer applied to a synthetic ICL task. Using theory and experiment, we show that the sub-circuits that memorize and generalize can be viewed as largely independent. The relative rates at which these sub-circuits learn explains the transition from memorization to generalization, rather than capacity constraints. We uncover a memorization scaling law, which determines the task diversity threshold at which the network generalizes. The theory quantitatively explains a variety of other ICL-related phenomena, including the long-tailed distribution of when ICL is acquired, the bimodal behavior of solutions close to the task diversity threshold, the influence of contextual and data distributional statistics on ICL, and the transient nature of ICL.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11661294/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Transformers exhibit in-context learning (ICL): the ability to use novel information presented in the context without additional weight updates. Recent work shows that ICL emerges when models are trained on a sufficiently diverse set of tasks and the transition from memorization to generalization is sharp with increasing task diversity. One interpretation is that a network's limited capacity to memorize favors generalization. Here, we examine the mechanistic underpinnings of this transition using a small transformer applied to a synthetic ICL task. Using theory and experiment, we show that the sub-circuits that memorize and generalize can be viewed as largely independent. The relative rates at which these sub-circuits learn explains the transition from memorization to generalization, rather than capacity constraints. We uncover a memorization scaling law, which determines the task diversity threshold at which the network generalizes. The theory quantitatively explains a variety of other ICL-related phenomena, including the long-tailed distribution of when ICL is acquired, the bimodal behavior of solutions close to the task diversity threshold, the influence of contextual and data distributional statistics on ICL, and the transient nature of ICL.

分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
VEPerform: a web resource for evaluating the performance of variant effect predictors. Metastability in networks of nonlinear stochastic integrate-and-fire neurons. Differential learning kinetics govern the transition from memorization to generalization during in-context learning. On the linear scaling of entropy vs. energy in human brain activity, the Hagedorn temperature and the Zipf law. Correlation-weighted 23Na magnetic resonance fingerprinting in the brain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1