Generating Novel Brain Morphology by Deforming Learned Templates.

ArXiv Pub Date : 2025-07-31
Alan Q Wang, Fangrui Huang, Bailey Trang, Wei Peng, Mohammad Abbasi, Kilian M Pohl, Mert R Sabuncu, Ehsan Adeli
{"title":"Generating Novel Brain Morphology by Deforming Learned Templates.","authors":"Alan Q Wang, Fangrui Huang, Bailey Trang, Wei Peng, Mohammad Abbasi, Kilian M Pohl, Mert R Sabuncu, Ehsan Adeli","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Designing generative models for 3D structural brain MRI that synthesize morphologically-plausible and attribute-specific (e.g., age, sex, disease state) samples is an active area of research. Existing approaches based on frameworks like GANs or diffusion models synthesize the image directly, which may limit their ability to capture intricate morphological details. In this work, we propose a 3D brain MRI generation method based on state-of-the-art latent diffusion models (LDMs), called MorphLDM, that generates novel images by applying synthesized deformation fields to a learned template. Instead of using a reconstruction-based autoencoder (as in a typical LDM), our encoder outputs a latent embedding derived from both an image and a learned template that is itself the output of a template decoder; this latent is passed to a deformation field decoder, whose output is applied to the learned template. A registration loss is minimized between the original image and the deformed template with respect to the encoder and both decoders. Empirically, our approach outperforms generative baselines on metrics spanning image diversity, adherence with respect to input conditions, and voxel-based morphometry. Our code is available at https://github.com/alanqrwang/morphldm.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11908372/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Designing generative models for 3D structural brain MRI that synthesize morphologically-plausible and attribute-specific (e.g., age, sex, disease state) samples is an active area of research. Existing approaches based on frameworks like GANs or diffusion models synthesize the image directly, which may limit their ability to capture intricate morphological details. In this work, we propose a 3D brain MRI generation method based on state-of-the-art latent diffusion models (LDMs), called MorphLDM, that generates novel images by applying synthesized deformation fields to a learned template. Instead of using a reconstruction-based autoencoder (as in a typical LDM), our encoder outputs a latent embedding derived from both an image and a learned template that is itself the output of a template decoder; this latent is passed to a deformation field decoder, whose output is applied to the learned template. A registration loss is minimized between the original image and the deformed template with respect to the encoder and both decoders. Empirically, our approach outperforms generative baselines on metrics spanning image diversity, adherence with respect to input conditions, and voxel-based morphometry. Our code is available at https://github.com/alanqrwang/morphldm.

分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过变形学习模板生成新的脑形态。
设计生成模型的三维结构脑MRI合成形态合理和属性特异性(例如,年龄,性别,疾病状态)的样本是一个活跃的研究领域。现有的基于gan或扩散模型等框架的方法直接合成图像,这可能限制了它们捕捉复杂形态细节的能力。在这项工作中,我们提出了一种基于最先进的潜在扩散模型(ldm)的3D脑MRI生成方法,称为MorphLDM,该方法通过将合成变形场应用于学习模板来生成新图像。我们的编码器没有使用基于重建的自编码器(如典型的LDM),而是输出来自图像和学习模板的潜在嵌入,而学习模板本身就是模板解码器的输出;这个潜信号被传递给变形场解码器,它的输出被应用到学习到的模板。相对于编码器和两个解码器,在原始图像和变形模板之间最小化配准损失。从经验上看,我们的方法在跨越图像多样性、对输入条件的依从性和基于体素的形态测量的度量方面优于生成基线。我们的代码可在https://github.com/alanqrwang/morphldm上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A tissue-informed deep learning-based method for positron range correction in preclinical 68Ga PET imaging. Age-Dependent Causal Effects of Mandibular Dose on Osteoradionecrosis Risk After Head and Neck Radiotherapy. Transformer brain encoders explain human high-level visual responses. Mesoscale tissue properties and electric fields in brain stimulation: Bridging the macroscopic and microscopic scales using layer-specific cortical conductivity. Unlocking hidden biomolecular conformational landscapes in diffusion models at inference time.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1