Deep learning enhanced quantum holography with undetected photons.

IF 15.7 Q1 OPTICS PhotoniX Pub Date : 2024-01-01 Epub Date: 2024-12-18 DOI:10.1186/s43074-024-00155-2
Weiru Fan, Gewei Qian, Yutong Wang, Chen-Ran Xu, Ziyang Chen, Xun Liu, Wei Li, Xu Liu, Feng Liu, Xingqi Xu, Da-Wei Wang, Vladislav V Yakovlev
{"title":"Deep learning enhanced quantum holography with undetected photons.","authors":"Weiru Fan, Gewei Qian, Yutong Wang, Chen-Ran Xu, Ziyang Chen, Xun Liu, Wei Li, Xu Liu, Feng Liu, Xingqi Xu, Da-Wei Wang, Vladislav V Yakovlev","doi":"10.1186/s43074-024-00155-2","DOIUrl":null,"url":null,"abstract":"<p><p>Holography is an essential technique of generating three-dimensional images. Recently, quantum holography with undetected photons (QHUP) has emerged as a groundbreaking method capable of capturing complex amplitude images. Despite its potential, the practical application of QHUP has been limited by susceptibility to phase disturbances, low interference visibility, and limited spatial resolution. Deep learning, recognized for its ability in processing complex data, holds significant promise in addressing these challenges. In this report, we present an ample advancement in QHUP achieved by harnessing the power of deep learning to extract images from single-shot holograms, resulting in vastly reduced noise and distortion, alongside a notable enhancement in spatial resolution. The proposed and demonstrated deep learning QHUP (DL-QHUP) methodology offers a transformative solution by delivering high-speed imaging, improved spatial resolution, and superior noise resilience, making it suitable for diverse applications across an array of research fields stretching from biomedical imaging to remote sensing. DL-QHUP signifies a crucial leap forward in the realm of holography, demonstrating its immense potential to revolutionize imaging capabilities and pave the way for advancements in various scientific disciplines. The integration of DL-QHUP promises to unlock new possibilities in imaging applications, transcending existing limitations and offering unparalleled performance in challenging environments.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1186/s43074-024-00155-2.</p>","PeriodicalId":93483,"journal":{"name":"PhotoniX","volume":"5 1","pages":"40"},"PeriodicalIF":15.7000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11655614/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PhotoniX","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s43074-024-00155-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/18 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Holography is an essential technique of generating three-dimensional images. Recently, quantum holography with undetected photons (QHUP) has emerged as a groundbreaking method capable of capturing complex amplitude images. Despite its potential, the practical application of QHUP has been limited by susceptibility to phase disturbances, low interference visibility, and limited spatial resolution. Deep learning, recognized for its ability in processing complex data, holds significant promise in addressing these challenges. In this report, we present an ample advancement in QHUP achieved by harnessing the power of deep learning to extract images from single-shot holograms, resulting in vastly reduced noise and distortion, alongside a notable enhancement in spatial resolution. The proposed and demonstrated deep learning QHUP (DL-QHUP) methodology offers a transformative solution by delivering high-speed imaging, improved spatial resolution, and superior noise resilience, making it suitable for diverse applications across an array of research fields stretching from biomedical imaging to remote sensing. DL-QHUP signifies a crucial leap forward in the realm of holography, demonstrating its immense potential to revolutionize imaging capabilities and pave the way for advancements in various scientific disciplines. The integration of DL-QHUP promises to unlock new possibilities in imaging applications, transcending existing limitations and offering unparalleled performance in challenging environments.

Supplementary information: The online version contains supplementary material available at 10.1186/s43074-024-00155-2.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
深度学习增强了未探测光子的量子全息。
全息术是生成三维图像的一项重要技术。最近,未探测光子的量子全息术(QHUP)作为一种能够捕捉复杂振幅图像的突破性方法而出现。尽管具有潜力,但QHUP的实际应用受到相位干扰的敏感性、低干扰可见度和有限的空间分辨率的限制。深度学习以其处理复杂数据的能力而闻名,在解决这些挑战方面具有重要的前景。在本报告中,我们通过利用深度学习的力量从单次全息图中提取图像,在QHUP方面取得了长足的进步,从而大大降低了噪声和失真,同时显著提高了空间分辨率。提出并演示的深度学习QHUP (DL-QHUP)方法提供了一种变革性的解决方案,通过提供高速成像,提高空间分辨率和卓越的噪声恢复能力,使其适用于从生物医学成像到遥感的一系列研究领域的各种应用。DL-QHUP标志着全息领域的重大飞跃,展示了其革命性成像能力的巨大潜力,并为各种科学学科的进步铺平了道路。DL-QHUP的集成有望为成像应用解锁新的可能性,超越现有的限制,并在具有挑战性的环境中提供无与伦比的性能。补充信息:在线版本包含补充资料,可在10.1186/s43074-024-00155-2获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
25.70
自引率
0.00%
发文量
0
审稿时长
13 weeks
期刊最新文献
Deep-learning-enabled temporally super-resolved multiplexed fringe projection profilometry: high-speed kHz 3D imaging with low-speed camera Optical steelyard: high-resolution and wide-range refractive index sensing by synergizing Fabry–Perot interferometer with metafibers Ultra-low-defect homoepitaxial micro-LEDs with enhanced efficiency and monochromaticity for high-PPI AR/MR displays Real-time monitoring of fast gas dynamics with a single-molecule resolution by frequency-comb-referenced plasmonic phase spectroscopy Ultrahigh-fidelity full-color holographic display via color-aware optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1