Prioritizing Parkinson's disease risk genes in genome-wide association loci.

Lara M Lange, Catalina Cerquera-Cleves, Marijn Schipper, Georgia Panagiotaropoulou, Alice Braun, Julia Kraft, Swapnil Awasthi, Nathaniel Bell, Danielle Posthuma, Stephan Ripke, Cornelis Blauwendraat, Karl Heilbron
{"title":"Prioritizing Parkinson's disease risk genes in genome-wide association loci.","authors":"Lara M Lange, Catalina Cerquera-Cleves, Marijn Schipper, Georgia Panagiotaropoulou, Alice Braun, Julia Kraft, Swapnil Awasthi, Nathaniel Bell, Danielle Posthuma, Stephan Ripke, Cornelis Blauwendraat, Karl Heilbron","doi":"10.1101/2024.12.13.24318996","DOIUrl":null,"url":null,"abstract":"<p><p>Recent advancements in Parkinson's disease (PD) drug development have been significantly driven by genetic research. Importantly, drugs supported by genetic evidence are more likely to be approved. While genome-wide association studies (GWAS) are a powerful tool to nominate genomic regions associated with certain traits or diseases, pinpointing the causal biologically relevant gene is often challenging. Our aim was to prioritize genes underlying PD GWAS signals. The polygenic priority score (PoPS) is a similarity-based gene prioritization method that integrates genome-wide information from MAGMA gene-level association tests and more than 57,000 gene-level features, including gene expression, biological pathways, and protein-protein interactions. We applied PoPS to data from the largest published PD GWAS in East Asian- and European-ancestries. We identified 120 independent associations with <i>P</i> < 5×10 <sup>-8</sup> and prioritized 46 PD genes across these loci based on their PoPS scores, distance to the GWAS signal, and presence of non-synonymous variants in the credible set. Alongside well-established PD genes ( <i>e.g., TMEM175</i> and <i>VPS13C</i> ), some of which are targeted in ongoing clinical trials ( <i>i.e.</i> , <i>SNCA</i> , <i>LRRK2</i> , and <i>GBA1</i> ), we prioritized genes with a plausible mechanistic link to PD pathogenesis ( <i>e.g., RIT2, BAG3</i> , and <i>SCARB2</i> ). Many of these genes hold potential for drug repurposing or novel therapeutic developments for PD ( <i>i.e., FYN, DYRK1A, NOD2, CTSB, SV2C,</i> and <i>ITPKB</i> ). Additionally, we prioritized potentially druggable genes that are relatively unexplored in PD ( <i>XPO1, PIK3CA, EP300, MAP4K4, CAMK2D, NCOR1,</i> and <i>WDR43</i> ). We prioritized a high-confidence list of genes with strong links to PD pathogenesis that may represent our next-best candidates for disease-modifying therapeutics. We hope our findings stimulate further investigations and preclinical work to facilitate PD drug development programs.</p>","PeriodicalId":94281,"journal":{"name":"medRxiv : the preprint server for health sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11661345/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv : the preprint server for health sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.12.13.24318996","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recent advancements in Parkinson's disease (PD) drug development have been significantly driven by genetic research. Importantly, drugs supported by genetic evidence are more likely to be approved. While genome-wide association studies (GWAS) are a powerful tool to nominate genomic regions associated with certain traits or diseases, pinpointing the causal biologically relevant gene is often challenging. Our aim was to prioritize genes underlying PD GWAS signals. The polygenic priority score (PoPS) is a similarity-based gene prioritization method that integrates genome-wide information from MAGMA gene-level association tests and more than 57,000 gene-level features, including gene expression, biological pathways, and protein-protein interactions. We applied PoPS to data from the largest published PD GWAS in East Asian- and European-ancestries. We identified 120 independent associations with P < 5×10 -8 and prioritized 46 PD genes across these loci based on their PoPS scores, distance to the GWAS signal, and presence of non-synonymous variants in the credible set. Alongside well-established PD genes ( e.g., TMEM175 and VPS13C ), some of which are targeted in ongoing clinical trials ( i.e. , SNCA , LRRK2 , and GBA1 ), we prioritized genes with a plausible mechanistic link to PD pathogenesis ( e.g., RIT2, BAG3 , and SCARB2 ). Many of these genes hold potential for drug repurposing or novel therapeutic developments for PD ( i.e., FYN, DYRK1A, NOD2, CTSB, SV2C, and ITPKB ). Additionally, we prioritized potentially druggable genes that are relatively unexplored in PD ( XPO1, PIK3CA, EP300, MAP4K4, CAMK2D, NCOR1, and WDR43 ). We prioritized a high-confidence list of genes with strong links to PD pathogenesis that may represent our next-best candidates for disease-modifying therapeutics. We hope our findings stimulate further investigations and preclinical work to facilitate PD drug development programs.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Direct Prosthesis Force Control with Tactile Feedback May Connect with the Internal Model. Effects of commonly used antibiotics on children's developing gut microbiomes and resistomes in peri-urban Lima, Peru. Greater lesion damage is bidirectionally related with accelerated brain aging after stroke. Pallidal and motor cortical interactions determine gait initiation dynamics in Parkinson's disease. Prioritizing Parkinson's disease risk genes in genome-wide association loci.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1