{"title":"Cluster Engineering in Water Catalytic Reactions: Synthesis, Structure–Activity Relationship and Mechanism","authors":"Zhijie Kong, Xue Zhao, Wu-Chu Li, Jia-Yun Wang, Si Li, Zhijuan Liu, Xi-Yan Dong, Rui Wang, Ren-Wu Huang, Shuang-Quan Zang","doi":"10.1021/acsami.4c16063","DOIUrl":null,"url":null,"abstract":"Four fundamental reactions are essential to harnessing energy from water sustainably: oxidation reduction reaction (ORR), oxygen reduction reaction (OER), hydrogen oxidation reaction (HOR), and hydrogen evolution reaction (HER). This review summarizes the research advancements in the electrocatalytic reaction of metal nanoclusters for water splitting. It covers various types of nanoclusters, particularly those at the size level, that enhance these catalytic reactions. The synthesis of cluster-based catalysts and the elucidation of the structure–activity relationships and reaction mechanisms are discussed. Emphasis is placed on utilizing atomically precise cluster materials and the interplay between the carrier and cluster in water catalysis, especially for applying catalytic engineering principles (such as synergy, coordination, heterointerface, and lattice strain engineering) to understand structure–activity relationships and catalytic mechanisms for cluster-based catalysts. Finally, the field of cluster water catalysis is summarized and prospected. We believe that developing cluster-based catalysts with high activity, excellent stability, and high selectivity will significantly promote the development of renewable energy conversion reactions.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"41 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c16063","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Four fundamental reactions are essential to harnessing energy from water sustainably: oxidation reduction reaction (ORR), oxygen reduction reaction (OER), hydrogen oxidation reaction (HOR), and hydrogen evolution reaction (HER). This review summarizes the research advancements in the electrocatalytic reaction of metal nanoclusters for water splitting. It covers various types of nanoclusters, particularly those at the size level, that enhance these catalytic reactions. The synthesis of cluster-based catalysts and the elucidation of the structure–activity relationships and reaction mechanisms are discussed. Emphasis is placed on utilizing atomically precise cluster materials and the interplay between the carrier and cluster in water catalysis, especially for applying catalytic engineering principles (such as synergy, coordination, heterointerface, and lattice strain engineering) to understand structure–activity relationships and catalytic mechanisms for cluster-based catalysts. Finally, the field of cluster water catalysis is summarized and prospected. We believe that developing cluster-based catalysts with high activity, excellent stability, and high selectivity will significantly promote the development of renewable energy conversion reactions.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.