Bioinspired Carbon‐Silver Sulfide Scaffold with Synergistic Enhanced Light Capture and Anti‐Biofouling Property for Stable Solar Steam Generation

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Small Pub Date : 2024-12-24 DOI:10.1002/smll.202402544
Yang You, Hanye Xing, Kangkang Li, Yuqing Xie, Meiqi Ye, Yang Lu, Jingzhe Xue
{"title":"Bioinspired Carbon‐Silver Sulfide Scaffold with Synergistic Enhanced Light Capture and Anti‐Biofouling Property for Stable Solar Steam Generation","authors":"Yang You, Hanye Xing, Kangkang Li, Yuqing Xie, Meiqi Ye, Yang Lu, Jingzhe Xue","doi":"10.1002/smll.202402544","DOIUrl":null,"url":null,"abstract":"Carbon material is a hot topic in solar evaporation. Due to the widely distributed microorganisms in natural water, biofouling has limited the actual application of solar evaporation material. Although carbon material lacks of nutrition for microbe, it is still vulnerable to biofouling because of the efficient pollutant adsorption property. However, current anti‐biofouling design focuses on microbial control, neglects its influence on evaporators light absorption, that is usually a trade‐off with evaporation efficiency. Herein, a bioinspired aligned carbon‐Ag<jats:sub>2</jats:sub>S scaffold is introduced with synergistical enhanced light absorption (increased to 98.0% from 97.4%) and anti‐biofouling property. The bioinspired aligned carbon‐Ag<jats:sub>2</jats:sub>S scaffold exhibits a 1.87 kg m<jats:sup>−2</jats:sup> h<jats:sup>−1</jats:sup> evaporation rate under one sun, superior to pure carbon scaffold (1.78 kg m<jats:sup>−2</jats:sup> h<jats:sup>−1</jats:sup>). It also maintains efficient light capture (‐97.2%) and evaporation rate (1.73 kg m<jats:sup>−2</jats:sup> h<jats:sup>−1</jats:sup>) after bacterial interference, avoiding sharp decline in light absorption (reduced to 83.3–87.6%) and evaporation performance (reduced to 1.24–1.28 kg m<jats:sup>−2</jats:sup> h<jats:sup>−1</jats:sup>) which occurs in carbon scaffold due to biofouling. The carbon‐Ag<jats:sub>2</jats:sub>S scaffold shows solid advantage in balancing light captures and biofouling control, compared to carbon‐ZnO scaffold with conventional anti‐biofouling design, which inhibits biofouling sacrificing light absorption (reduced to 89.8%) and evaporation performance (reduced to 1.41 kg m<jats:sup>−2</jats:sup> h<jats:sup>−1</jats:sup>).","PeriodicalId":228,"journal":{"name":"Small","volume":"244 6 1","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202402544","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Carbon material is a hot topic in solar evaporation. Due to the widely distributed microorganisms in natural water, biofouling has limited the actual application of solar evaporation material. Although carbon material lacks of nutrition for microbe, it is still vulnerable to biofouling because of the efficient pollutant adsorption property. However, current anti‐biofouling design focuses on microbial control, neglects its influence on evaporators light absorption, that is usually a trade‐off with evaporation efficiency. Herein, a bioinspired aligned carbon‐Ag2S scaffold is introduced with synergistical enhanced light absorption (increased to 98.0% from 97.4%) and anti‐biofouling property. The bioinspired aligned carbon‐Ag2S scaffold exhibits a 1.87 kg m−2 h−1 evaporation rate under one sun, superior to pure carbon scaffold (1.78 kg m−2 h−1). It also maintains efficient light capture (‐97.2%) and evaporation rate (1.73 kg m−2 h−1) after bacterial interference, avoiding sharp decline in light absorption (reduced to 83.3–87.6%) and evaporation performance (reduced to 1.24–1.28 kg m−2 h−1) which occurs in carbon scaffold due to biofouling. The carbon‐Ag2S scaffold shows solid advantage in balancing light captures and biofouling control, compared to carbon‐ZnO scaffold with conventional anti‐biofouling design, which inhibits biofouling sacrificing light absorption (reduced to 89.8%) and evaporation performance (reduced to 1.41 kg m−2 h−1).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
期刊最新文献
Recent Advances in Selective Chemical Etching of Nanomaterials for High‐Performance Electrodes in Electrocatalysis and Energy Storage Spatially Confined Construction of Ultrasmall Pd Clusters Within Nitro‐Bonded Covalent Organic Frameworks for Efficient Alkyne Semihydrogenation Bioinspired Carbon‐Silver Sulfide Scaffold with Synergistic Enhanced Light Capture and Anti‐Biofouling Property for Stable Solar Steam Generation Versatile LaCo0.6Ni0.4O3‐δ Nanofiber Membrane for High Performance Oxygen Electrocatalysis over a Wide Temperature Range Covalent Organic Frameworks with Tunable Bridge Positions for Photocatalytic CO2 Reduction to Propylene Under Visible Light Illumination
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1