Self-Wrinkling-Induced Mechanically Adaptive Patterned Surface of Photocuring Coating for Abrasion Resistance

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Materials Pub Date : 2024-12-24 DOI:10.1002/adma.202414352
Yi Zhu, Jin Li, Tianjiao Ma, Xiaxin Gao, Kexing Li, Xiaodong Ma, Xuesong Jiang
{"title":"Self-Wrinkling-Induced Mechanically Adaptive Patterned Surface of Photocuring Coating for Abrasion Resistance","authors":"Yi Zhu, Jin Li, Tianjiao Ma, Xiaxin Gao, Kexing Li, Xiaodong Ma, Xuesong Jiang","doi":"10.1002/adma.202414352","DOIUrl":null,"url":null,"abstract":"Providing mechanically adaptive performance to surfaces is significant in preserving materials from damage in variable environments, however, it has rarely been studied. Inspired by the mechanically adaptive behaviors of the surface microstructure on the carapace of desert scorpions and bark of desert tamarisks, a self-wrinkled mechanically adaptive patterned surface (SWMAPS) using one-step UV-curing and self-wrinkling technique is reported. Because of the fluorinated polyurethane photo-initiator formed by self-assembly at the top surface, UV-induced photo-crosslinking can spontaneously generate a gradient-crosslinked structure and wrinkled patterns with different morphology. With mechanically adaptive behavior originating from self-assembled fluorinated polyurethane photo-initiators, gradient-crosslinked structures, and self-wrinkled patterns, the SWMAPS remains intact under 600 cycles of reciprocating friction with little variation in the coefficient of friction and water contact angle. The SWMAPS prepared by programmable UV irradiation maintains integral under 1800 cycles of reciprocating friction with a stable friction coefficient. Furthermore, the SWMAPS is fabricated with high efficiency, regulated morphology, good surface mechanical properties, and self-recovery performance. This strategy establishes a new field of mechanically adaptive patterned surfaces, which significantly improves durability and prolongs the service life of materials in variable environments.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"11 12 1","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202414352","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Providing mechanically adaptive performance to surfaces is significant in preserving materials from damage in variable environments, however, it has rarely been studied. Inspired by the mechanically adaptive behaviors of the surface microstructure on the carapace of desert scorpions and bark of desert tamarisks, a self-wrinkled mechanically adaptive patterned surface (SWMAPS) using one-step UV-curing and self-wrinkling technique is reported. Because of the fluorinated polyurethane photo-initiator formed by self-assembly at the top surface, UV-induced photo-crosslinking can spontaneously generate a gradient-crosslinked structure and wrinkled patterns with different morphology. With mechanically adaptive behavior originating from self-assembled fluorinated polyurethane photo-initiators, gradient-crosslinked structures, and self-wrinkled patterns, the SWMAPS remains intact under 600 cycles of reciprocating friction with little variation in the coefficient of friction and water contact angle. The SWMAPS prepared by programmable UV irradiation maintains integral under 1800 cycles of reciprocating friction with a stable friction coefficient. Furthermore, the SWMAPS is fabricated with high efficiency, regulated morphology, good surface mechanical properties, and self-recovery performance. This strategy establishes a new field of mechanically adaptive patterned surfaces, which significantly improves durability and prolongs the service life of materials in variable environments.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
期刊最新文献
Rationally Engineering Pro‐Proteins and Membrane‐Penetrating α‑Helical Polypeptides for Genome Editing Toward Choroidal Neovascularization Treatment Clarifying the Active Structure and Reaction Mechanism of Atomically Dispersed Metal and Nonmetal Sites with Enhanced Activity for Oxygen Reduction Reaction Self-Wrinkling-Induced Mechanically Adaptive Patterned Surface of Photocuring Coating for Abrasion Resistance Flexible Photonic Materials and Devices: Synthetic Strategies, Sensing Properties, and Wearable Applications Ionic Diode-Based Drug Delivery System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1