Repurposing the Antihypertensive Agent Hydralazine As an Inhibitor of the Base Excision Repair Enzyme APE1.

IF 3.7 3区 医学 Q2 CHEMISTRY, MEDICINAL Chemical Research in Toxicology Pub Date : 2025-01-20 Epub Date: 2024-12-24 DOI:10.1021/acs.chemrestox.4c00445
Tanhaul Islam, Venkatrao Nunna, Don Pivithuru Liyanarachchi, Douglas Melton, Calvin D Lewis, Kent S Gates
{"title":"Repurposing the Antihypertensive Agent Hydralazine As an Inhibitor of the Base Excision Repair Enzyme APE1.","authors":"Tanhaul Islam, Venkatrao Nunna, Don Pivithuru Liyanarachchi, Douglas Melton, Calvin D Lewis, Kent S Gates","doi":"10.1021/acs.chemrestox.4c00445","DOIUrl":null,"url":null,"abstract":"<p><p>Apurinic/apyrimidinic endonuclease 1 (APE1) is a central enzyme in the base excision repair (BER) pathway. APE1 catalyzes incision of the phosphodiester linkage on the 5'-side of apurinic/apyrimidinic (AP) sites during the repair of damaged nucleobases in cellular DNA. Inhibition of this enzyme can potentiate the action of DNA-damaging chemotherapeutic agents. The antihypertensive drug hydralazine generates covalent AP adducts that block the catalytic action of APE1. Hydralazine was found to be superior to the investigational drug methoxyamine in its capacity to covalently capture AP sites in duplex DNA and inhibit the action of APE1. It was further shown that hydralazine sensitized SF295 glioblastoma cells to the cytotoxic action of the anticancer drug Temozolomide, which generates alkylpurine residues requiring APE1 for repair. The results suggest that the FDA-approved drug hydralazine might be repurposed in oncology to potentiate the activity of existing chemotherapeutic agents that induce AP sites in cellular DNA.</p>","PeriodicalId":31,"journal":{"name":"Chemical Research in Toxicology","volume":" ","pages":"42-45"},"PeriodicalIF":3.7000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Research in Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.chemrestox.4c00445","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/24 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Apurinic/apyrimidinic endonuclease 1 (APE1) is a central enzyme in the base excision repair (BER) pathway. APE1 catalyzes incision of the phosphodiester linkage on the 5'-side of apurinic/apyrimidinic (AP) sites during the repair of damaged nucleobases in cellular DNA. Inhibition of this enzyme can potentiate the action of DNA-damaging chemotherapeutic agents. The antihypertensive drug hydralazine generates covalent AP adducts that block the catalytic action of APE1. Hydralazine was found to be superior to the investigational drug methoxyamine in its capacity to covalently capture AP sites in duplex DNA and inhibit the action of APE1. It was further shown that hydralazine sensitized SF295 glioblastoma cells to the cytotoxic action of the anticancer drug Temozolomide, which generates alkylpurine residues requiring APE1 for repair. The results suggest that the FDA-approved drug hydralazine might be repurposed in oncology to potentiate the activity of existing chemotherapeutic agents that induce AP sites in cellular DNA.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
降压药肼作为碱基切除修复酶APE1抑制剂的研究。
无尿嘧啶/无嘧啶内切酶1 (APE1)是碱基切除修复(BER)途径的中心酶。在细胞DNA中受损核碱基的修复过程中,APE1催化apurinic/ ap嘧啶(AP)位点5'侧磷酸二酯链的切开。抑制这种酶可以增强dna损伤化疗药物的作用。抗高血压药物肼嗪产生共价AP加合物,阻断APE1的催化作用。Hydralazine在共价捕获双链DNA AP位点和抑制APE1作用方面优于研究药物甲氧胺。研究进一步表明,肼嗪使SF295胶质母细胞瘤细胞对抗癌药物替莫唑胺的细胞毒性作用敏感,替莫唑胺产生需要APE1进行修复的烷基嘌呤残基。结果表明,fda批准的药物肼嗪可能被重新用于肿瘤学,以增强现有化疗药物的活性,这些化疗药物可以诱导细胞DNA中的AP位点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.90
自引率
7.30%
发文量
215
审稿时长
3.5 months
期刊介绍: Chemical Research in Toxicology publishes Articles, Rapid Reports, Chemical Profiles, Reviews, Perspectives, Letters to the Editor, and ToxWatch on a wide range of topics in Toxicology that inform a chemical and molecular understanding and capacity to predict biological outcomes on the basis of structures and processes. The overarching goal of activities reported in the Journal are to provide knowledge and innovative approaches needed to promote intelligent solutions for human safety and ecosystem preservation. The journal emphasizes insight concerning mechanisms of toxicity over phenomenological observations. It upholds rigorous chemical, physical and mathematical standards for characterization and application of modern techniques.
期刊最新文献
Exploring Potential Associations between Benzo[a]pyrene, Nicotine Exposure, and Lung Cancer: Molecular Insights, Prognostic Biomarkers, and Immune Cell Infiltration. Improving Volatile Organic Compound Exposure Assessment Using Biomonitoring by Relating Exposure Biomarker Levels in Blood and Urine. Consensus Modeling for Predicting Chemical Binding to Transthyretin as the Winning Solution of the Tox24 Challenge. Vitamin E Acetate Causes Softening of Pulmonary Surfactant Membrane Models. Issue Editorial Masthead
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1