Targeting the gut-skin axis by food-derived active peptides ameliorates skin photoaging: a comprehensive review.

IF 5.1 1区 农林科学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Food & Function Pub Date : 2024-12-24 DOI:10.1039/d4fo04202f
Yang Liu, Ling Xiong, Luanfeng Wang, Jianxin Zhou, Fang Wang, Feijun Luo, Xinchun Shen
{"title":"Targeting the gut-skin axis by food-derived active peptides ameliorates skin photoaging: a comprehensive review.","authors":"Yang Liu, Ling Xiong, Luanfeng Wang, Jianxin Zhou, Fang Wang, Feijun Luo, Xinchun Shen","doi":"10.1039/d4fo04202f","DOIUrl":null,"url":null,"abstract":"<p><p>Food-derived active peptides (FDAPs) are a class of peptides that exert antioxidant, anti-inflammatory, anti-aging and other effects. In recent years, active peptides from natural foods have been reported to improve skin photoaging, but their mechanisms have not been summarized to date. In this review, we focused on the preparation of FDAPs, their mechanisms of photoaging, and their function against photoaging through the gastrointestinal barrier. Furthermore, the latest progress on FDAPs in the prevention and treatment of skin photoaging <i>via</i> the gut-skin axis is summarized and discussed. FDAPs can be directly absorbed into the gastrointestinal tract and enter skin tissues to exert anti-photoaging effects; they can also regulate the gut microbiota, leading to changes in metabolites to ameliorate light-induced skin aging. Future work needs to focus on the delivery system and clinical validation of anti-photoaging peptides to provide solutions or suggestions for improving photoaging.</p>","PeriodicalId":77,"journal":{"name":"Food & Function","volume":" ","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food & Function","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1039/d4fo04202f","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Food-derived active peptides (FDAPs) are a class of peptides that exert antioxidant, anti-inflammatory, anti-aging and other effects. In recent years, active peptides from natural foods have been reported to improve skin photoaging, but their mechanisms have not been summarized to date. In this review, we focused on the preparation of FDAPs, their mechanisms of photoaging, and their function against photoaging through the gastrointestinal barrier. Furthermore, the latest progress on FDAPs in the prevention and treatment of skin photoaging via the gut-skin axis is summarized and discussed. FDAPs can be directly absorbed into the gastrointestinal tract and enter skin tissues to exert anti-photoaging effects; they can also regulate the gut microbiota, leading to changes in metabolites to ameliorate light-induced skin aging. Future work needs to focus on the delivery system and clinical validation of anti-photoaging peptides to provide solutions or suggestions for improving photoaging.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Food & Function
Food & Function BIOCHEMISTRY & MOLECULAR BIOLOGY-FOOD SCIENCE & TECHNOLOGY
CiteScore
10.10
自引率
6.60%
发文量
957
审稿时长
1.8 months
期刊介绍: Food & Function provides a unique venue for physicists, chemists, biochemists, nutritionists and other food scientists to publish work at the interface of the chemistry, physics and biology of food. The journal focuses on food and the functions of food in relation to health.
期刊最新文献
Combination of inorganic nitrate and vitamin C prevents collagen-induced arthritis in rats by inhibiting pyroptosis. Diverse domains of raspberry pectin: critical determinants for protecting against IBDs. Targeting the gut-skin axis by food-derived active peptides ameliorates skin photoaging: a comprehensive review. Astaxanthin promotes the longevity of Caenorhabditis elegans via modulation of the intracellular redox status and PHA-4-mediated autophagy. Camel milk extracellular vesicles/exosomes: a fascinating frontier in isolation and therapeutic potential.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1