Design and characterization of hollow microneedles for localized intrascleral drug delivery of ocular formulations.

IF 4.2 3区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Methods Pub Date : 2024-12-21 DOI:10.1016/j.ymeth.2024.12.004
Shilpkala Gade, Lalitkumar Vora, Raghu Raj Singh Thakur
{"title":"Design and characterization of hollow microneedles for localized intrascleral drug delivery of ocular formulations.","authors":"Shilpkala Gade, Lalitkumar Vora, Raghu Raj Singh Thakur","doi":"10.1016/j.ymeth.2024.12.004","DOIUrl":null,"url":null,"abstract":"<p><p>Effective drug delivery to the posterior segment of the eye remains a challenge owing to the limitations of conventional methods such as intravitreal injections, which are associated with significant side effects. This study explored the use of hollow microneedles (HMNs) for localized intrascleral drug delivery as a minimally invasive alternative. Stainless steel HMNs with bevel angles of 30°, 45°, 60°, and 75° were fabricated using wire electron discharge machining. The penetration force of these HMNs in ex vivo porcine sclera was assessed using a texture analyser, revealing that the 60° bevel angle required the lowest force (<2N), making it optimal for scleral penetration. To ensure precision in drug delivery, 3D-printed adapters were developed to control the injection angles and volumes. The distribution of a model dye, rhodamine B, was studied via digital imaging, multiphoton microscopy, and confocal microscopy. The results showed that HMNs with a 60° bevel angle could penetrate the sclera to a depth of approximately 450 µm at a 45° injection angle, providing enhanced distribution within the scleral layers. This study confirmed that the use of HMNs enables effective and controlled intrascleral drug delivery, resulting in the formation of localized depots with minimal tissue damage. This research demonstrates the potential of HMNs as a promising alternative to traditional ocular drug delivery methods, offering improved bioavailability and the potential to reduce patient discomfort.</p>","PeriodicalId":390,"journal":{"name":"Methods","volume":" ","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.ymeth.2024.12.004","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Effective drug delivery to the posterior segment of the eye remains a challenge owing to the limitations of conventional methods such as intravitreal injections, which are associated with significant side effects. This study explored the use of hollow microneedles (HMNs) for localized intrascleral drug delivery as a minimally invasive alternative. Stainless steel HMNs with bevel angles of 30°, 45°, 60°, and 75° were fabricated using wire electron discharge machining. The penetration force of these HMNs in ex vivo porcine sclera was assessed using a texture analyser, revealing that the 60° bevel angle required the lowest force (<2N), making it optimal for scleral penetration. To ensure precision in drug delivery, 3D-printed adapters were developed to control the injection angles and volumes. The distribution of a model dye, rhodamine B, was studied via digital imaging, multiphoton microscopy, and confocal microscopy. The results showed that HMNs with a 60° bevel angle could penetrate the sclera to a depth of approximately 450 µm at a 45° injection angle, providing enhanced distribution within the scleral layers. This study confirmed that the use of HMNs enables effective and controlled intrascleral drug delivery, resulting in the formation of localized depots with minimal tissue damage. This research demonstrates the potential of HMNs as a promising alternative to traditional ocular drug delivery methods, offering improved bioavailability and the potential to reduce patient discomfort.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Methods
Methods 生物-生化研究方法
CiteScore
9.80
自引率
2.10%
发文量
222
审稿时长
11.3 weeks
期刊介绍: Methods focuses on rapidly developing techniques in the experimental biological and medical sciences. Each topical issue, organized by a guest editor who is an expert in the area covered, consists solely of invited quality articles by specialist authors, many of them reviews. Issues are devoted to specific technical approaches with emphasis on clear detailed descriptions of protocols that allow them to be reproduced easily. The background information provided enables researchers to understand the principles underlying the methods; other helpful sections include comparisons of alternative methods giving the advantages and disadvantages of particular methods, guidance on avoiding potential pitfalls, and suggestions for troubleshooting.
期刊最新文献
Design and characterization of hollow microneedles for localized intrascleral drug delivery of ocular formulations. Deepstack-ACE: A deep stacking-based ensemble learning framework for the accelerated discovery of ACE inhibitory peptides. Predicting cyclins based on key features and machine learning methods. BCDB: A Dual-Branch Network Based on Transformer for Predicting Transcription Factor Binding Sites. Nanotechnological approaches to improve corticosteroids ocular therapy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1