Juraj Velcicky, Estelle Ngo, Matthias R Bauer, Arndt Meyer, Achim Schlapbach, Sophie Racine, David Orain, Daniel Pflieger, Sylvie Teixeira-Fouchard, Celine Dubois, Alban Goetz, Roland Steiner, Marco Palmieri, Alex Bussenault, Rowan Stringer, Patrice Larger, Simone Riek, Patrick Schmutz, Sylvie Lehmann, Clemens Scheufler, Jean-Michel Rondeau, Christoph Burkhart, Thomas Knoepfel, Nina Gommermann
{"title":"Thiazole-Based IL-17 Inhibitors Discovered by Scaffold Morphing.","authors":"Juraj Velcicky, Estelle Ngo, Matthias R Bauer, Arndt Meyer, Achim Schlapbach, Sophie Racine, David Orain, Daniel Pflieger, Sylvie Teixeira-Fouchard, Celine Dubois, Alban Goetz, Roland Steiner, Marco Palmieri, Alex Bussenault, Rowan Stringer, Patrice Larger, Simone Riek, Patrick Schmutz, Sylvie Lehmann, Clemens Scheufler, Jean-Michel Rondeau, Christoph Burkhart, Thomas Knoepfel, Nina Gommermann","doi":"10.1002/cmdc.202400851","DOIUrl":null,"url":null,"abstract":"<p><p>The pro-inflammatory cytokine interleukin-17A (IL-17) plays an important role in the body's defense against bacterial and fungal infections. However, overexpression of IL-17 has been associated with several diseases, including rheumatoid arthritis, asthma, psoriasis, and even cancer. The role of IL-17 in psoriasis has been confirmed by clinical use of IL-17 antibodies, e. g. secukinumab (Cosentyx<sup>®</sup>). Ongoing research is focused on discovering low molecular weight IL-17 inhibitors. In this publication, we present thiazole-based IL-17 inhibitors discovered through a scaffold-morphing strategy. This strategy involved ring-opening of a known scaffold and utilization of a chalcogen interaction between thiazole-sulfur and central amide-oxygen to maintain the coplanar conformation found in the parent compound. The new scaffold enabled the generation of highly potent compounds with good overall profile. The optimized compounds 11 and 15 demonstrated good exposure in rats after oral dosing. Importantly, compound 11 exhibited no adverse effects in a rat tolerability study after a four-day administration of up to 300 mg/kg/day.</p>","PeriodicalId":147,"journal":{"name":"ChemMedChem","volume":" ","pages":"e202400851"},"PeriodicalIF":3.6000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemMedChem","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/cmdc.202400851","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
The pro-inflammatory cytokine interleukin-17A (IL-17) plays an important role in the body's defense against bacterial and fungal infections. However, overexpression of IL-17 has been associated with several diseases, including rheumatoid arthritis, asthma, psoriasis, and even cancer. The role of IL-17 in psoriasis has been confirmed by clinical use of IL-17 antibodies, e. g. secukinumab (Cosentyx®). Ongoing research is focused on discovering low molecular weight IL-17 inhibitors. In this publication, we present thiazole-based IL-17 inhibitors discovered through a scaffold-morphing strategy. This strategy involved ring-opening of a known scaffold and utilization of a chalcogen interaction between thiazole-sulfur and central amide-oxygen to maintain the coplanar conformation found in the parent compound. The new scaffold enabled the generation of highly potent compounds with good overall profile. The optimized compounds 11 and 15 demonstrated good exposure in rats after oral dosing. Importantly, compound 11 exhibited no adverse effects in a rat tolerability study after a four-day administration of up to 300 mg/kg/day.
期刊介绍:
Quality research. Outstanding publications. With an impact factor of 3.124 (2019), ChemMedChem is a top journal for research at the interface of chemistry, biology and medicine. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies.
ChemMedChem publishes primary as well as critical secondary and tertiary information from authors across and for the world. Its mission is to integrate the wide and flourishing field of medicinal and pharmaceutical sciences, ranging from drug design and discovery to drug development and delivery, from molecular modeling to combinatorial chemistry, from target validation to lead generation and ADMET studies. ChemMedChem typically covers topics on small molecules, therapeutic macromolecules, peptides, peptidomimetics, and aptamers, protein-drug conjugates, nucleic acid therapies, and beginning 2017, nanomedicine, particularly 1) targeted nanodelivery, 2) theranostic nanoparticles, and 3) nanodrugs.
Contents
ChemMedChem publishes an attractive mixture of:
Full Papers and Communications
Reviews and Minireviews
Patent Reviews
Highlights and Concepts
Book and Multimedia Reviews.