Identification of STAT3 phosphorylation inhibitors using generative deep learning, virtual screening, molecular dynamics simulations, and biological evaluation for non-small cell lung cancer therapy.
Weiji Cai, Beier Jiang, Yichen Yin, Lei Ma, Tao Li, Jing Chen
{"title":"Identification of STAT3 phosphorylation inhibitors using generative deep learning, virtual screening, molecular dynamics simulations, and biological evaluation for non-small cell lung cancer therapy.","authors":"Weiji Cai, Beier Jiang, Yichen Yin, Lei Ma, Tao Li, Jing Chen","doi":"10.1007/s11030-024-11067-5","DOIUrl":null,"url":null,"abstract":"<p><p>The development of phosphorylation-suppressing inhibitors targeting Signal Transducer and Activator of Transcription 3 (STAT3) represents a promising therapeutic strategy for non-small cell lung cancer (NSCLC). In this study, a generative model was developed using transfer learning and virtual screening, leveraging a comprehensive dataset of STAT3 inhibitors to explore the chemical space for novel candidates. This approach yielded a chemically diverse library of compounds, which were prioritized through molecular docking and molecular dynamics (MD) simulations. Among the identified candidates, the HG110 molecule demonstrated potent suppression of STAT3 phosphorylation at Tyr705 and inhibited its nuclear translocation in IL6-stimulated H441 cells. Rigorous MD simulations further confirmed the stability and interaction profiles of top candidates within the STAT3 binding site. Notably, HG106 and HG110 exhibited superior binding affinities and stable conformations, with favorable interactions involving key residues in the STAT3 binding pocket, outperforming known inhibitors. These findings underscore the potential of generative deep learning to expedite the discovery of selective STAT3 inhibitors, providing a compelling pathway for advancing NSCLC therapies.</p>","PeriodicalId":708,"journal":{"name":"Molecular Diversity","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Diversity","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11030-024-11067-5","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The development of phosphorylation-suppressing inhibitors targeting Signal Transducer and Activator of Transcription 3 (STAT3) represents a promising therapeutic strategy for non-small cell lung cancer (NSCLC). In this study, a generative model was developed using transfer learning and virtual screening, leveraging a comprehensive dataset of STAT3 inhibitors to explore the chemical space for novel candidates. This approach yielded a chemically diverse library of compounds, which were prioritized through molecular docking and molecular dynamics (MD) simulations. Among the identified candidates, the HG110 molecule demonstrated potent suppression of STAT3 phosphorylation at Tyr705 and inhibited its nuclear translocation in IL6-stimulated H441 cells. Rigorous MD simulations further confirmed the stability and interaction profiles of top candidates within the STAT3 binding site. Notably, HG106 and HG110 exhibited superior binding affinities and stable conformations, with favorable interactions involving key residues in the STAT3 binding pocket, outperforming known inhibitors. These findings underscore the potential of generative deep learning to expedite the discovery of selective STAT3 inhibitors, providing a compelling pathway for advancing NSCLC therapies.
期刊介绍:
Molecular Diversity is a new publication forum for the rapid publication of refereed papers dedicated to describing the development, application and theory of molecular diversity and combinatorial chemistry in basic and applied research and drug discovery. The journal publishes both short and full papers, perspectives, news and reviews dealing with all aspects of the generation of molecular diversity, application of diversity for screening against alternative targets of all types (biological, biophysical, technological), analysis of results obtained and their application in various scientific disciplines/approaches including:
combinatorial chemistry and parallel synthesis;
small molecule libraries;
microwave synthesis;
flow synthesis;
fluorous synthesis;
diversity oriented synthesis (DOS);
nanoreactors;
click chemistry;
multiplex technologies;
fragment- and ligand-based design;
structure/function/SAR;
computational chemistry and molecular design;
chemoinformatics;
screening techniques and screening interfaces;
analytical and purification methods;
robotics, automation and miniaturization;
targeted libraries;
display libraries;
peptides and peptoids;
proteins;
oligonucleotides;
carbohydrates;
natural diversity;
new methods of library formulation and deconvolution;
directed evolution, origin of life and recombination;
search techniques, landscapes, random chemistry and more;