Renwei Li, Jing Huang, Yuhao Wei, Yusha Wang, Can Lu, Jifeng Liu, Xuelei Ma
{"title":"Nanotherapeutics for Macrophage Network Modulation in Tumor Microenvironments: Targets and Tools.","authors":"Renwei Li, Jing Huang, Yuhao Wei, Yusha Wang, Can Lu, Jifeng Liu, Xuelei Ma","doi":"10.2147/IJN.S491573","DOIUrl":null,"url":null,"abstract":"<p><p>Macrophage is an important component in the tumor immune microenvironment, which exerts significant influence on tumor development and metastasis. Due to their dual nature of promoting and suppressing inflammation, macrophages can serve as both targets for tumor immunotherapy and tools for treating malignancies. However, the abundant infiltration of tumor-associated macrophages dominated by an immunosuppressive phenotype maintains a pro-tumor microenvironment, and engineering macrophages using nanotechnology to manipulate the tumor immune microenvironment represent a feasible approach for cancer immunotherapy. Additionally, considering the phagocytic and specifically tumor-targeting capabilities of M1 macrophages, macrophages manipulated through cellular engineering and nanotechnology, as well as macrophage-derived exosomes and macrophage membranes, can also become effective tools for cancer treatment. In conclusion, nanotherapeutics targeting macrophages remains immense potential for the development of macrophage-mediated tumor treatment methods and will further enhance our understanding, diagnosis, and treatment of various malignants.</p>","PeriodicalId":14084,"journal":{"name":"International Journal of Nanomedicine","volume":"19 ","pages":"13615-13651"},"PeriodicalIF":6.6000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11665441/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nanomedicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/IJN.S491573","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Macrophage is an important component in the tumor immune microenvironment, which exerts significant influence on tumor development and metastasis. Due to their dual nature of promoting and suppressing inflammation, macrophages can serve as both targets for tumor immunotherapy and tools for treating malignancies. However, the abundant infiltration of tumor-associated macrophages dominated by an immunosuppressive phenotype maintains a pro-tumor microenvironment, and engineering macrophages using nanotechnology to manipulate the tumor immune microenvironment represent a feasible approach for cancer immunotherapy. Additionally, considering the phagocytic and specifically tumor-targeting capabilities of M1 macrophages, macrophages manipulated through cellular engineering and nanotechnology, as well as macrophage-derived exosomes and macrophage membranes, can also become effective tools for cancer treatment. In conclusion, nanotherapeutics targeting macrophages remains immense potential for the development of macrophage-mediated tumor treatment methods and will further enhance our understanding, diagnosis, and treatment of various malignants.
期刊介绍:
The International Journal of Nanomedicine is a globally recognized journal that focuses on the applications of nanotechnology in the biomedical field. It is a peer-reviewed and open-access publication that covers diverse aspects of this rapidly evolving research area.
With its strong emphasis on the clinical potential of nanoparticles in disease diagnostics, prevention, and treatment, the journal aims to showcase cutting-edge research and development in the field.
Starting from now, the International Journal of Nanomedicine will not accept meta-analyses for publication.