Multidisciplinary quantitative and qualitative assessment of IDH-mutant gliomas with full diagnostic deep learning image reconstruction.

IF 1.8 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING European Journal of Radiology Open Pub Date : 2024-12-04 eCollection Date: 2024-12-01 DOI:10.1016/j.ejro.2024.100617
Christer Ruff, Paula Bombach, Constantin Roder, Eliane Weinbrenner, Christoph Artzner, Leonie Zerweck, Frank Paulsen, Till-Karsten Hauser, Ulrike Ernemann, Georg Gohla
{"title":"Multidisciplinary quantitative and qualitative assessment of IDH-mutant gliomas with full diagnostic deep learning image reconstruction.","authors":"Christer Ruff, Paula Bombach, Constantin Roder, Eliane Weinbrenner, Christoph Artzner, Leonie Zerweck, Frank Paulsen, Till-Karsten Hauser, Ulrike Ernemann, Georg Gohla","doi":"10.1016/j.ejro.2024.100617","DOIUrl":null,"url":null,"abstract":"<p><p><b>Rationale and Objectives:</b> Diagnostic accuracy and therapeutic decision-making for IDH-mutant gliomas in tumor board reviews are based on MRI and multidisciplinary interactions.</p><p><strong>Materials and methods: </strong>This study explores the feasibility of deep learning-based reconstruction (DLR) in MRI for IDH-mutant gliomas. The research utilizes a multidisciplinary approach, engaging neuroradiologists, neurosurgeons, neuro-oncologists, and radiotherapists to evaluate qualitative aspects of DLR and conventional reconstructed (CR) sequences. Furthermore, quantitative image quality and tumor volumes according to Response Assessment in Neuro-Oncology (RANO) 2.0 standards were assessed.</p><p><strong>Results: </strong>All DLR sequences consistently outperformed CR sequences (median of 4 for all) in qualitative image quality across all raters (p < 0.001 for all) and revealed higher SNR and CNR values (p < 0.001 for all). Preference for all DLR over CR was overwhelming, with ratings of 84 % from the neuroradiologist, 100 % from the neurosurgeon, 92 % from the neuro-oncologist, and 84 % from the radiation oncologist. The RANO 2.0 compliant measurements showed no significant difference between the CR and DRL sequences (p = 0.142).</p><p><strong>Conclusion: </strong>This study demonstrates the clinical feasibility of DLR in MR imaging of IDH-mutant gliomas, with significant time savings of 29.6 % on average and non-inferior image quality to CR. DLR sequences received strong multidisciplinary preference, underscoring their potential for enhancing neuro-oncological decision-making and suitability for clinical implementation.</p>","PeriodicalId":38076,"journal":{"name":"European Journal of Radiology Open","volume":"13 ","pages":"100617"},"PeriodicalIF":1.8000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11664152/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Radiology Open","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.ejro.2024.100617","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Rationale and Objectives: Diagnostic accuracy and therapeutic decision-making for IDH-mutant gliomas in tumor board reviews are based on MRI and multidisciplinary interactions.

Materials and methods: This study explores the feasibility of deep learning-based reconstruction (DLR) in MRI for IDH-mutant gliomas. The research utilizes a multidisciplinary approach, engaging neuroradiologists, neurosurgeons, neuro-oncologists, and radiotherapists to evaluate qualitative aspects of DLR and conventional reconstructed (CR) sequences. Furthermore, quantitative image quality and tumor volumes according to Response Assessment in Neuro-Oncology (RANO) 2.0 standards were assessed.

Results: All DLR sequences consistently outperformed CR sequences (median of 4 for all) in qualitative image quality across all raters (p < 0.001 for all) and revealed higher SNR and CNR values (p < 0.001 for all). Preference for all DLR over CR was overwhelming, with ratings of 84 % from the neuroradiologist, 100 % from the neurosurgeon, 92 % from the neuro-oncologist, and 84 % from the radiation oncologist. The RANO 2.0 compliant measurements showed no significant difference between the CR and DRL sequences (p = 0.142).

Conclusion: This study demonstrates the clinical feasibility of DLR in MR imaging of IDH-mutant gliomas, with significant time savings of 29.6 % on average and non-inferior image quality to CR. DLR sequences received strong multidisciplinary preference, underscoring their potential for enhancing neuro-oncological decision-making and suitability for clinical implementation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
European Journal of Radiology Open
European Journal of Radiology Open Medicine-Radiology, Nuclear Medicine and Imaging
CiteScore
4.10
自引率
5.00%
发文量
55
审稿时长
51 days
期刊最新文献
An online national quality assessment survey of prostate MRI reading: interreader variability in prostate volume measurement and PI-RADS classification. Deep learning enabled near-isotropic CAIPIRINHA VIBE in the nephrogenic phase improves image quality and renal lesion conspicuity. Multidisciplinary quantitative and qualitative assessment of IDH-mutant gliomas with full diagnostic deep learning image reconstruction. Role of pre-procedure CCTA in predicting failed percutaneous coronary intervention for chronic total occlusions Enhancing mortality prediction in patients with spontaneous intracerebral hemorrhage: Radiomics and supervised machine learning on non-contrast computed tomography
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1