Pathway metrics accurately stratify T cells to their cells states.

IF 4 3区 生物学 Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY Biodata Mining Pub Date : 2024-12-24 DOI:10.1186/s13040-024-00416-7
Dani Livne, Sol Efroni
{"title":"Pathway metrics accurately stratify T cells to their cells states.","authors":"Dani Livne, Sol Efroni","doi":"10.1186/s13040-024-00416-7","DOIUrl":null,"url":null,"abstract":"<p><p>Pathway analysis is a powerful approach for elucidating insights from gene expression data and associating such changes with cellular phenotypes. The overarching objective of pathway research is to identify critical molecular drivers within a cellular context and uncover novel signaling networks from groups of relevant biomolecules. In this work, we present PathSingle, a Python-based pathway analysis tool tailored for single-cell data analysis. PathSingle employs a unique graph-based algorithm to enable the classification of diverse cellular states, such as T cell subtypes. Designed to be open-source, extensible, and computationally efficient, PathSingle is available at https://github.com/zurkin1/PathSingle under the MIT license. This tool provides researchers with a versatile framework for uncovering biologically meaningful insights from high-dimensional single-cell transcriptomics data, facilitating a deeper understanding of cellular regulation and function.</p>","PeriodicalId":48947,"journal":{"name":"Biodata Mining","volume":"17 1","pages":"60"},"PeriodicalIF":4.0000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11668091/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biodata Mining","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13040-024-00416-7","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Pathway analysis is a powerful approach for elucidating insights from gene expression data and associating such changes with cellular phenotypes. The overarching objective of pathway research is to identify critical molecular drivers within a cellular context and uncover novel signaling networks from groups of relevant biomolecules. In this work, we present PathSingle, a Python-based pathway analysis tool tailored for single-cell data analysis. PathSingle employs a unique graph-based algorithm to enable the classification of diverse cellular states, such as T cell subtypes. Designed to be open-source, extensible, and computationally efficient, PathSingle is available at https://github.com/zurkin1/PathSingle under the MIT license. This tool provides researchers with a versatile framework for uncovering biologically meaningful insights from high-dimensional single-cell transcriptomics data, facilitating a deeper understanding of cellular regulation and function.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通路指标准确地将T细胞分层到它们的细胞状态。
途径分析是一种强有力的方法,用于阐明基因表达数据的见解,并将这种变化与细胞表型联系起来。途径研究的首要目标是识别细胞背景下的关键分子驱动因素,并从相关生物分子群中发现新的信号网络。在这项工作中,我们提出了PathSingle,一个基于python的通路分析工具,专门用于单细胞数据分析。PathSingle采用一种独特的基于图的算法来实现不同细胞状态的分类,例如T细胞亚型。PathSingle的设计是开源的、可扩展的、计算效率高的,可以在MIT许可下从https://github.com/zurkin1/PathSingle获得。该工具为研究人员提供了一个通用的框架,用于从高维单细胞转录组学数据中发现生物学上有意义的见解,促进对细胞调节和功能的更深入了解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biodata Mining
Biodata Mining MATHEMATICAL & COMPUTATIONAL BIOLOGY-
CiteScore
7.90
自引率
0.00%
发文量
28
审稿时长
23 weeks
期刊介绍: BioData Mining is an open access, open peer-reviewed journal encompassing research on all aspects of data mining applied to high-dimensional biological and biomedical data, focusing on computational aspects of knowledge discovery from large-scale genetic, transcriptomic, genomic, proteomic, and metabolomic data. Topical areas include, but are not limited to: -Development, evaluation, and application of novel data mining and machine learning algorithms. -Adaptation, evaluation, and application of traditional data mining and machine learning algorithms. -Open-source software for the application of data mining and machine learning algorithms. -Design, development and integration of databases, software and web services for the storage, management, retrieval, and analysis of data from large scale studies. -Pre-processing, post-processing, modeling, and interpretation of data mining and machine learning results for biological interpretation and knowledge discovery.
期刊最新文献
AI as an accelerator for defining new problems that transcends boundaries. Machine learning models for reinjury risk prediction using cardiopulmonary exercise testing (CPET) data: optimizing athlete recovery. Feature graphs for interpretable unsupervised tree ensembles: centrality, interaction, and application in disease subtyping. Agenda setting for health equity assessment through the lenses of social determinants of health using machine learning approach: a framework and preliminary pilot study. Immune cell profiles and predictive modeling in osteoporotic vertebral fractures using XGBoost machine learning algorithms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1