QuICSeedR: an R package for analyzing fluorophore-assisted seed amplification assay data.

Manci Li, Damani N Bryant, Sarah Gresch, Marissa S Milstein, Peter R Christenson, Stuart S Lichtenberg, Peter A Larsen, Sang-Hyun Oh
{"title":"QuICSeedR: an R package for analyzing fluorophore-assisted seed amplification assay data.","authors":"Manci Li, Damani N Bryant, Sarah Gresch, Marissa S Milstein, Peter R Christenson, Stuart S Lichtenberg, Peter A Larsen, Sang-Hyun Oh","doi":"10.1093/bioinformatics/btae752","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Fluorophore-assisted seed amplification assays (F-SAAs), such as real-time quaking-induced conversion (RT-QuIC) and fluorophore-assisted protein misfolding cyclic amplification (F-PMCA), have become indispensable tools for studying protein misfolding in neurodegenerative diseases. However, analyzing data generated by these techniques often requires complex and time-consuming manual processes. In addition, the lack of standardization in F-SAA data analysis presents a significant challenge to the interpretation and reproducibility of F-SAA results across different laboratories and studies. There is a need for automated, standardized analysis tools that can efficiently process F-SAA data while ensuring consistency and reliability across different research settings.</p><p><strong>Results: </strong>Here, we present QuICSeedR (pronounced as \"quick seeder\"), an R package that addresses these challenges by providing a comprehensive toolkit for the automated processing, analysis, and visualization of F-SAA data. Importantly, QuICSeedR also establishes the foundation for building an F-SAA data management and analysis framework, enabling more consistent and comparable results across different research groups.</p><p><strong>Availability and implementation: </strong>QuICSeedR is freely available at: https://CRAN.R-project.org/package=QuICSeedR. Data and code used in this manuscript are provided in Supplementary Materials.</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11742141/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btae752","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation: Fluorophore-assisted seed amplification assays (F-SAAs), such as real-time quaking-induced conversion (RT-QuIC) and fluorophore-assisted protein misfolding cyclic amplification (F-PMCA), have become indispensable tools for studying protein misfolding in neurodegenerative diseases. However, analyzing data generated by these techniques often requires complex and time-consuming manual processes. In addition, the lack of standardization in F-SAA data analysis presents a significant challenge to the interpretation and reproducibility of F-SAA results across different laboratories and studies. There is a need for automated, standardized analysis tools that can efficiently process F-SAA data while ensuring consistency and reliability across different research settings.

Results: Here, we present QuICSeedR (pronounced as "quick seeder"), an R package that addresses these challenges by providing a comprehensive toolkit for the automated processing, analysis, and visualization of F-SAA data. Importantly, QuICSeedR also establishes the foundation for building an F-SAA data management and analysis framework, enabling more consistent and comparable results across different research groups.

Availability and implementation: QuICSeedR is freely available at: https://CRAN.R-project.org/package=QuICSeedR. Data and code used in this manuscript are provided in Supplementary Materials.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
QuICSeedR:用于分析荧光团辅助种子扩增分析数据的R包。
动机:荧光团辅助种子扩增试验(F-SAAs),如实时振动诱导转化(RT-QuIC)和荧光团辅助蛋白质错误折叠循环扩增(F-PMCA),已成为研究神经退行性疾病中蛋白质错误折叠不可或缺的工具。然而,分析由这些技术生成的数据通常需要复杂且耗时的手动过程。此外,F-SAA数据分析缺乏标准化,对不同实验室和研究中F-SAA结果的解释和可重复性提出了重大挑战。需要自动化、标准化的分析工具来有效地处理F-SAA数据,同时确保不同研究设置的一致性和可靠性。结果:在这里,我们提出了QuICSeedR(发音为“quick seed”),这是一个R软件包,通过提供一个全面的工具包来自动处理、分析和可视化F-SAA数据,解决了这些挑战。重要的是,QuICSeedR还为构建F-SAA数据管理和分析框架奠定了基础,使不同研究小组的结果更加一致和可比。可用性:QuICSeedR免费提供:https://CRAN.R-project.org/package=QuICSeedR。本文中使用的数据和代码在补充材料中提供。补充信息:补充数据可在生物信息学在线获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
HTSinfer: Inferring metadata from bulk illumina RNA-Seq libraries. MOSTPLAS: A Self-correction Multi-label Learning Model for Plasmid Host Range Prediction. GCLink: a graph contrastive link prediction framework for gene regulatory network inference. PNL: a software to build polygenic risk scores using a Super Learner approach based on PairNet, a Convolutional Neural Network. TiltRec: An ultra-fast and open-source toolkit for cryo-electron tomographic reconstruction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1