Decoding thoughts, encoding ethics: A narrative review of the BCI-AI revolution.

IF 2.7 4区 医学 Q3 NEUROSCIENCES Brain Research Pub Date : 2024-12-22 DOI:10.1016/j.brainres.2024.149423
Thorsten Rudroff
{"title":"Decoding thoughts, encoding ethics: A narrative review of the BCI-AI revolution.","authors":"Thorsten Rudroff","doi":"10.1016/j.brainres.2024.149423","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>This narrative review aims to analyze mechanisms underlying Brain-Computer Interface (BCI) and Artificial Intelligence (AI) integration, evaluate recent advances in signal acquisition and processing techniques, and assess AI-enhanced neural decoding strategies. The review identifies critical research gaps and examines emerging solutions across multiple domains of BCI-AI integration.</p><p><strong>Methods: </strong>A narrative review was conducted using major biomedical and scientific databases including PubMed, Web of Science, IEEE Xplore, and Scopus (2014-2024). Literature was analyzed to identify key developments in BCI-AI integration, with particular emphasis on recent advances (2019-2024). The review process involved thematic analysis of selected publications focusing on practical applications, technical innovations, and emerging challenges.</p><p><strong>Results: </strong>Recent advances demonstrate significant improvements in BCI-AI systems: 1) High-density electrode arrays achieve spatial resolution up to 5 mm, with stable recordings over 15 months; 2) Deep learning decoders show 40 % improvement in information transfer rates compared to traditional methods; 3) Adaptive algorithms maintain >90 % success rates in motor control tasks over 200-day periods without recalibration; 4) Novel closed-loop optimization frameworks reduce user training time by 55 % while improving accuracy. Latest developments in flexible neural interfaces and self-supervised learning approaches show promise in addressing long-term stability and cross-user generalization challenges.</p><p><strong>Conclusions: </strong>BCI-AI integration shows remarkable progress in improving signal quality, decoding accuracy, and user adaptation. While challenges remain in long-term stability and user training, advances in adaptive algorithms and feedback mechanisms demonstrate the technology's growing viability for clinical applications. Recent innovations in electrode technology, AI architectures, and closed-loop systems, combined with emerging standardization frameworks, suggest accelerating progress toward widespread therapeutic use and human augmentation applications.</p>","PeriodicalId":9083,"journal":{"name":"Brain Research","volume":" ","pages":"149423"},"PeriodicalIF":2.7000,"publicationDate":"2024-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.brainres.2024.149423","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives: This narrative review aims to analyze mechanisms underlying Brain-Computer Interface (BCI) and Artificial Intelligence (AI) integration, evaluate recent advances in signal acquisition and processing techniques, and assess AI-enhanced neural decoding strategies. The review identifies critical research gaps and examines emerging solutions across multiple domains of BCI-AI integration.

Methods: A narrative review was conducted using major biomedical and scientific databases including PubMed, Web of Science, IEEE Xplore, and Scopus (2014-2024). Literature was analyzed to identify key developments in BCI-AI integration, with particular emphasis on recent advances (2019-2024). The review process involved thematic analysis of selected publications focusing on practical applications, technical innovations, and emerging challenges.

Results: Recent advances demonstrate significant improvements in BCI-AI systems: 1) High-density electrode arrays achieve spatial resolution up to 5 mm, with stable recordings over 15 months; 2) Deep learning decoders show 40 % improvement in information transfer rates compared to traditional methods; 3) Adaptive algorithms maintain >90 % success rates in motor control tasks over 200-day periods without recalibration; 4) Novel closed-loop optimization frameworks reduce user training time by 55 % while improving accuracy. Latest developments in flexible neural interfaces and self-supervised learning approaches show promise in addressing long-term stability and cross-user generalization challenges.

Conclusions: BCI-AI integration shows remarkable progress in improving signal quality, decoding accuracy, and user adaptation. While challenges remain in long-term stability and user training, advances in adaptive algorithms and feedback mechanisms demonstrate the technology's growing viability for clinical applications. Recent innovations in electrode technology, AI architectures, and closed-loop systems, combined with emerging standardization frameworks, suggest accelerating progress toward widespread therapeutic use and human augmentation applications.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Brain Research
Brain Research 医学-神经科学
CiteScore
5.90
自引率
3.40%
发文量
268
审稿时长
47 days
期刊介绍: An international multidisciplinary journal devoted to fundamental research in the brain sciences. Brain Research publishes papers reporting interdisciplinary investigations of nervous system structure and function that are of general interest to the international community of neuroscientists. As is evident from the journals name, its scope is broad, ranging from cellular and molecular studies through systems neuroscience, cognition and disease. Invited reviews are also published; suggestions for and inquiries about potential reviews are welcomed. With the appearance of the final issue of the 2011 subscription, Vol. 67/1-2 (24 June 2011), Brain Research Reviews has ceased publication as a distinct journal separate from Brain Research. Review articles accepted for Brain Research are now published in that journal.
期刊最新文献
Decoding thoughts, encoding ethics: A narrative review of the BCI-AI revolution. Lifespan trajectories of the morphology and tractography of the corpus callosum: A 5.0 T MRI study. Dynamic analysis of frequency specificity in multilayer brain networks. Nanoparticle-enhanced delivery of resveratrol for targeted therapy of glioblastoma: Modulating the Akt/GSK-3β/NF-kB pathway in C6 glioma cells. Titration of cuprizone induces reliable demyelination.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1