{"title":"Using the Pearson's correlation coefficient as the sole metric to measure the accuracy of quantitative trait prediction: is it sufficient?","authors":"Shouhui Pan, Zhongqiang Liu, Yanyun Han, Dongfeng Zhang, Xiangyu Zhao, Jinlong Li, Kaiyi Wang","doi":"10.3389/fpls.2024.1480463","DOIUrl":null,"url":null,"abstract":"<p><p>How to evaluate the accuracy of quantitative trait prediction is crucial to choose the best model among several possible choices in plant breeding. Pearson's correlation coefficient (PCC), serving as a metric for quantifying the strength of the linear association between two variables, is widely used to evaluate the accuracy of the quantitative trait prediction models, and generally performs well in most circumstances. However, PCC may not always offer a comprehensive view of predictive accuracy, especially in cases involving nonlinear relationships or complex dependencies in machine learning-based methods. It has been found that many papers on quantitative trait prediction solely use PCC as a single metric to evaluate the accuracy of their models, which is insufficient and limited from a formal perspective. This study addresses this crucial issue by presenting a typical example and conducting a comparative analysis of PCC and nine other evaluation metrics using four traditional methods and four machine learning-based methods, thereby contributing to the improvement of practical applicability and reliability of plant quantitative trait prediction models. It is recommended to employ PCC in conjunction with other evaluation metrics in a targeted manner based on specific application scenarios to reduce the likelihood of drawing misleading conclusions.</p>","PeriodicalId":12632,"journal":{"name":"Frontiers in Plant Science","volume":"15 ","pages":"1480463"},"PeriodicalIF":4.1000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11667204/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Plant Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fpls.2024.1480463","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
How to evaluate the accuracy of quantitative trait prediction is crucial to choose the best model among several possible choices in plant breeding. Pearson's correlation coefficient (PCC), serving as a metric for quantifying the strength of the linear association between two variables, is widely used to evaluate the accuracy of the quantitative trait prediction models, and generally performs well in most circumstances. However, PCC may not always offer a comprehensive view of predictive accuracy, especially in cases involving nonlinear relationships or complex dependencies in machine learning-based methods. It has been found that many papers on quantitative trait prediction solely use PCC as a single metric to evaluate the accuracy of their models, which is insufficient and limited from a formal perspective. This study addresses this crucial issue by presenting a typical example and conducting a comparative analysis of PCC and nine other evaluation metrics using four traditional methods and four machine learning-based methods, thereby contributing to the improvement of practical applicability and reliability of plant quantitative trait prediction models. It is recommended to employ PCC in conjunction with other evaluation metrics in a targeted manner based on specific application scenarios to reduce the likelihood of drawing misleading conclusions.
期刊介绍:
In an ever changing world, plant science is of the utmost importance for securing the future well-being of humankind. Plants provide oxygen, food, feed, fibers, and building materials. In addition, they are a diverse source of industrial and pharmaceutical chemicals. Plants are centrally important to the health of ecosystems, and their understanding is critical for learning how to manage and maintain a sustainable biosphere. Plant science is extremely interdisciplinary, reaching from agricultural science to paleobotany, and molecular physiology to ecology. It uses the latest developments in computer science, optics, molecular biology and genomics to address challenges in model systems, agricultural crops, and ecosystems. Plant science research inquires into the form, function, development, diversity, reproduction, evolution and uses of both higher and lower plants and their interactions with other organisms throughout the biosphere. Frontiers in Plant Science welcomes outstanding contributions in any field of plant science from basic to applied research, from organismal to molecular studies, from single plant analysis to studies of populations and whole ecosystems, and from molecular to biophysical to computational approaches.
Frontiers in Plant Science publishes articles on the most outstanding discoveries across a wide research spectrum of Plant Science. The mission of Frontiers in Plant Science is to bring all relevant Plant Science areas together on a single platform.