Analysis of the thermal distribution of a porous radial fin influenced by an inclined magnetic field with neural computing.

IF 3.8 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Scientific Reports Pub Date : 2024-12-24 DOI:10.1038/s41598-024-82017-2
Shazia Habib, Waseem, Zeeshan Khan, Salah Boulaaras, Mati Ur Rahman, Saeed Islam, Rafik Guefaifia
{"title":"Analysis of the thermal distribution of a porous radial fin influenced by an inclined magnetic field with neural computing.","authors":"Shazia Habib, Waseem, Zeeshan Khan, Salah Boulaaras, Mati Ur Rahman, Saeed Islam, Rafik Guefaifia","doi":"10.1038/s41598-024-82017-2","DOIUrl":null,"url":null,"abstract":"<p><p>Fins and radial fins are versatile engineering components that significantly enhance heat transfer and thermal management in diverse applications, hence improving efficiency and performance across several sectors. This study examines the temperature distribution in a radial porous fin under steady-state conditions, evaluating the impact of several significant parameters by utilizing a novel methodology. We specifically introduce an inclined magnetic field and examine the effects of convection and internal heat generation on the thermal behavior of the fin. We employ the Levenberg Marquard Backpropagation Neural Network Algorithm. We initially obtain the data with the bvp4c solver. This novel methodology demonstrates commendable performance, by its mean squared error and its gradient which are mentioned in their figures along with absolute error. Furthermore, increase in the parameters of heat generation and ambient temperature, results in a tendency for the temperature profile to rise. In contrast, as convection-conduction parameter, porosity parameter and Hartmann number increase, the temperature profile decreases. This innovative approach offers a sophisticated solution for complex thermal models, improved prediction accuracy for nonlinear heat transfer, parameter-driven optimization in porous media heat transfer, and increased model efficiency for real-time thermal management.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"14 1","pages":"30628"},"PeriodicalIF":3.8000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-024-82017-2","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Fins and radial fins are versatile engineering components that significantly enhance heat transfer and thermal management in diverse applications, hence improving efficiency and performance across several sectors. This study examines the temperature distribution in a radial porous fin under steady-state conditions, evaluating the impact of several significant parameters by utilizing a novel methodology. We specifically introduce an inclined magnetic field and examine the effects of convection and internal heat generation on the thermal behavior of the fin. We employ the Levenberg Marquard Backpropagation Neural Network Algorithm. We initially obtain the data with the bvp4c solver. This novel methodology demonstrates commendable performance, by its mean squared error and its gradient which are mentioned in their figures along with absolute error. Furthermore, increase in the parameters of heat generation and ambient temperature, results in a tendency for the temperature profile to rise. In contrast, as convection-conduction parameter, porosity parameter and Hartmann number increase, the temperature profile decreases. This innovative approach offers a sophisticated solution for complex thermal models, improved prediction accuracy for nonlinear heat transfer, parameter-driven optimization in porous media heat transfer, and increased model efficiency for real-time thermal management.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Scientific Reports
Scientific Reports Natural Science Disciplines-
CiteScore
7.50
自引率
4.30%
发文量
19567
审稿时长
3.9 months
期刊介绍: We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections. Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021). •Engineering Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live. •Physical sciences Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics. •Earth and environmental sciences Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems. •Biological sciences Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants. •Health sciences The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.
期刊最新文献
Availability and occurrence of coelenterazine in a Swedish fjord to maintain Amphiura filiformis bioluminescence. Nano-second pulsed laser ablation of inconel 718 and MMPCD for simultaneous optimal ablation rate and surface quality. Strength and Poisson's ratio of fused filament fabrication parts made from carbon filler enhanced PEEK compounds at elevated temperatures. Exploring optimal control strategies in a nonlinear fractional bi-susceptible model for Covid-19 dynamics using Atangana-Baleanu derivative. Exploring the nutritional composition and quality parameters of natural honey from diverse melliferous flora.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1