Shazia Habib, Waseem, Zeeshan Khan, Salah Boulaaras, Mati Ur Rahman, Saeed Islam, Rafik Guefaifia
{"title":"Analysis of the thermal distribution of a porous radial fin influenced by an inclined magnetic field with neural computing.","authors":"Shazia Habib, Waseem, Zeeshan Khan, Salah Boulaaras, Mati Ur Rahman, Saeed Islam, Rafik Guefaifia","doi":"10.1038/s41598-024-82017-2","DOIUrl":null,"url":null,"abstract":"<p><p>Fins and radial fins are versatile engineering components that significantly enhance heat transfer and thermal management in diverse applications, hence improving efficiency and performance across several sectors. This study examines the temperature distribution in a radial porous fin under steady-state conditions, evaluating the impact of several significant parameters by utilizing a novel methodology. We specifically introduce an inclined magnetic field and examine the effects of convection and internal heat generation on the thermal behavior of the fin. We employ the Levenberg Marquard Backpropagation Neural Network Algorithm. We initially obtain the data with the bvp4c solver. This novel methodology demonstrates commendable performance, by its mean squared error and its gradient which are mentioned in their figures along with absolute error. Furthermore, increase in the parameters of heat generation and ambient temperature, results in a tendency for the temperature profile to rise. In contrast, as convection-conduction parameter, porosity parameter and Hartmann number increase, the temperature profile decreases. This innovative approach offers a sophisticated solution for complex thermal models, improved prediction accuracy for nonlinear heat transfer, parameter-driven optimization in porous media heat transfer, and increased model efficiency for real-time thermal management.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"14 1","pages":"30628"},"PeriodicalIF":3.8000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-024-82017-2","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Fins and radial fins are versatile engineering components that significantly enhance heat transfer and thermal management in diverse applications, hence improving efficiency and performance across several sectors. This study examines the temperature distribution in a radial porous fin under steady-state conditions, evaluating the impact of several significant parameters by utilizing a novel methodology. We specifically introduce an inclined magnetic field and examine the effects of convection and internal heat generation on the thermal behavior of the fin. We employ the Levenberg Marquard Backpropagation Neural Network Algorithm. We initially obtain the data with the bvp4c solver. This novel methodology demonstrates commendable performance, by its mean squared error and its gradient which are mentioned in their figures along with absolute error. Furthermore, increase in the parameters of heat generation and ambient temperature, results in a tendency for the temperature profile to rise. In contrast, as convection-conduction parameter, porosity parameter and Hartmann number increase, the temperature profile decreases. This innovative approach offers a sophisticated solution for complex thermal models, improved prediction accuracy for nonlinear heat transfer, parameter-driven optimization in porous media heat transfer, and increased model efficiency for real-time thermal management.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.