The Implications of the Non-precipitable Nature of Branched Amylose with Concanavalin A for the Branched Structures of Rice Amylose.

IF 1.2 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of applied glycoscience Pub Date : 2024-11-20 eCollection Date: 2024-01-01 DOI:10.5458/jag.jag.JAG-2024_0009
Isao Hanashiro
{"title":"The Implications of the Non-precipitable Nature of Branched Amylose with Concanavalin A for the Branched Structures of Rice Amylose.","authors":"Isao Hanashiro","doi":"10.5458/jag.jag.JAG-2024_0009","DOIUrl":null,"url":null,"abstract":"<p><p>The branched structure of amylose was probed using concanavalin A (ConA) lectin, which forms precipitable aggregates with highly branched glucans, such as glycogen and amylopectin. Rice (japonica cultivar) amylose was fractionated from de-fatted, gelatinized starch by precipitation with 1-butanol (BuOH) and purified by ultracentrifugation and repeated crystallization. The purified amylose still has short side chains, whose chain-length (CL) distribution resembles that of amylopectin. More than 96 wt% of the amylose was not precipitated with ConA and remained in the resultant supernatant. The amylose recovered from the supernatant exhibited essentially the same size distributions of molecules and the CL distributions of main and side chains as those of amylose without ConA precipitation. The molar % of branched molecules was slightly decreased by ConA precipitation (-ConA, 11.6; +ConA, 8.1). These results suggest that the side chains detected in BuOH-precipitable amylose preparation are essentially attributable to amylose itself. Also, the non-precipitable nature of the branched molecules of amylose by ConA supports our previous proposal that the organization of the short side chains on amylose molecules is quite different from that found in amylopectin, in which the short side chains are arranged in a cluster fashion, and the branched glucan interacts with ConA to form precipitable aggregates. A tiny amount of ConA-precipitable glucan was detected, but its CL distribution was inconsistent with the size distribution of the branched molecules. Even if the precipitable glucans were fragments of amylopectin, their contribution to the branches detected in amylose should be minor.</p>","PeriodicalId":14999,"journal":{"name":"Journal of applied glycoscience","volume":"71 4","pages":"111-116"},"PeriodicalIF":1.2000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11664116/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of applied glycoscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5458/jag.jag.JAG-2024_0009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The branched structure of amylose was probed using concanavalin A (ConA) lectin, which forms precipitable aggregates with highly branched glucans, such as glycogen and amylopectin. Rice (japonica cultivar) amylose was fractionated from de-fatted, gelatinized starch by precipitation with 1-butanol (BuOH) and purified by ultracentrifugation and repeated crystallization. The purified amylose still has short side chains, whose chain-length (CL) distribution resembles that of amylopectin. More than 96 wt% of the amylose was not precipitated with ConA and remained in the resultant supernatant. The amylose recovered from the supernatant exhibited essentially the same size distributions of molecules and the CL distributions of main and side chains as those of amylose without ConA precipitation. The molar % of branched molecules was slightly decreased by ConA precipitation (-ConA, 11.6; +ConA, 8.1). These results suggest that the side chains detected in BuOH-precipitable amylose preparation are essentially attributable to amylose itself. Also, the non-precipitable nature of the branched molecules of amylose by ConA supports our previous proposal that the organization of the short side chains on amylose molecules is quite different from that found in amylopectin, in which the short side chains are arranged in a cluster fashion, and the branched glucan interacts with ConA to form precipitable aggregates. A tiny amount of ConA-precipitable glucan was detected, but its CL distribution was inconsistent with the size distribution of the branched molecules. Even if the precipitable glucans were fragments of amylopectin, their contribution to the branches detected in amylose should be minor.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
枝状直链淀粉与豆蛋白A的不可沉淀性对水稻直链淀粉枝状结构的影响。
使用ConA凝集素探测直链淀粉的支链结构,ConA凝集素与糖原和支链淀粉等高度支链的葡聚糖形成可沉淀的聚集体。采用1-丁醇沉淀法从去脂糊化淀粉中分离出直链淀粉,并采用超离心和反复结晶法提纯大米直链淀粉。纯化后的直链淀粉仍然具有短侧链,其链长(CL)分布与支链淀粉相似。超过96%的直链淀粉没有用ConA沉淀,而是保留在所得的上清液中。从上清中回收的直链淀粉的分子大小分布以及主链和侧链的CL分布与没有ConA沉淀的直链淀粉基本相同。通过ConA沉淀,支化分子的摩尔百分比略有下降(-ConA, 11.6;+ ConA, 8.1)。这些结果表明,在浮标可沉淀直链淀粉制备中检测到的侧链主要归因于直链淀粉本身。此外,ConA的直链淀粉支链分子的不可沉淀性支持了我们之前的建议,即直链淀粉分子上短侧链的组织与支链淀粉的组织有很大不同,支链淀粉的短侧链以簇的方式排列,支链葡聚糖与ConA相互作用形成可沉淀的聚集体。检测到少量cona可沉淀葡聚糖,但其CL分布与支链分子的大小分布不一致。即使可沉淀的葡聚糖是支链淀粉的片段,它们对直链淀粉分支的贡献也应该很小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of applied glycoscience
Journal of applied glycoscience BIOCHEMISTRY & MOLECULAR BIOLOGY-
自引率
9.10%
发文量
13
期刊最新文献
Characterization of waxy Diploid Wheat Flour and its Possible Practical Use. Construction of the Thermostable D-Allulose 3-Epimerase from Arthrobacter globiformis M30 by Protein Engineering Method. Efficient Synthesis of β-Glucose 1-Phosphate through Enzymatic Phosphorolysis and Baker's Yeast Fermentation. Mechanism-based Modelling for Fitting the Double-exponential Progress Curves of Cellulase Reaction. The Implications of the Non-precipitable Nature of Branched Amylose with Concanavalin A for the Branched Structures of Rice Amylose.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1