In situ staining with antibodies cross-reactive in pigs, cattle, and white-tailed deer facilitates understanding of biological tissue status and immunopathology.
Jayne E Wiarda, Eraldo L Zanella, Adrienne L Shircliff, Eric D Cassmann, Crystal L Loving, Alexandra C Buckley, Mitchell V Palmer
{"title":"In situ staining with antibodies cross-reactive in pigs, cattle, and white-tailed deer facilitates understanding of biological tissue status and immunopathology.","authors":"Jayne E Wiarda, Eraldo L Zanella, Adrienne L Shircliff, Eric D Cassmann, Crystal L Loving, Alexandra C Buckley, Mitchell V Palmer","doi":"10.1016/j.vetimm.2024.110865","DOIUrl":null,"url":null,"abstract":"<p><p>Identifying cellular markers within archived formalin-fixed, paraffin-embedded (FFPE) tissues is critical for understanding tissue landscapes impacting animal health, but in situ detection methods are limited in veterinary species by a restricted toolbox of species-compatible immunoreagents. We identify antibodies with conserved in situ reactivity to IBA-1 (macrophages/dendritic cells), CD3ε (T cells), Pax5 (B cells), Ki-67 (cycling cells), and cytokeratin type I/II (epithelial cells) in FFPE tissues of pigs, cattle, and white-tailed deer. Multiplexed brightfield detection (IBA-1/CD3ε/Pax5) in lymph nodes of all three species demonstrated species-specific and species-conserved features of cellular architecture. Multiplexed fluorescent staining in pig lymph nodes for IBA-1/CD3ε/Pax5/Ki-67 allowed detection of colocalizing signals and identification of active germinal centers. Antibody compatibility with RNA in situ hybridization was confirmed for all antibodies in all species, allowing co-detection of RNA markers, which is a strategy highly useful in veterinary species where protein-reactive reagents are often lacking. Multiplexed protein and RNA staining was performed in tonsil tissue of a pig infected with Senecavirus A, enabling identification of virally-infected cell types via simultaneous detection of host cell type-specific proteins and virus-specific RNA. Findings have important applications for future in situ identification and comparative study of tissue landscapes and immunopathology in a diverse range of veterinary species.</p>","PeriodicalId":23511,"journal":{"name":"Veterinary immunology and immunopathology","volume":"279 ","pages":"110865"},"PeriodicalIF":1.4000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Veterinary immunology and immunopathology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.vetimm.2024.110865","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Identifying cellular markers within archived formalin-fixed, paraffin-embedded (FFPE) tissues is critical for understanding tissue landscapes impacting animal health, but in situ detection methods are limited in veterinary species by a restricted toolbox of species-compatible immunoreagents. We identify antibodies with conserved in situ reactivity to IBA-1 (macrophages/dendritic cells), CD3ε (T cells), Pax5 (B cells), Ki-67 (cycling cells), and cytokeratin type I/II (epithelial cells) in FFPE tissues of pigs, cattle, and white-tailed deer. Multiplexed brightfield detection (IBA-1/CD3ε/Pax5) in lymph nodes of all three species demonstrated species-specific and species-conserved features of cellular architecture. Multiplexed fluorescent staining in pig lymph nodes for IBA-1/CD3ε/Pax5/Ki-67 allowed detection of colocalizing signals and identification of active germinal centers. Antibody compatibility with RNA in situ hybridization was confirmed for all antibodies in all species, allowing co-detection of RNA markers, which is a strategy highly useful in veterinary species where protein-reactive reagents are often lacking. Multiplexed protein and RNA staining was performed in tonsil tissue of a pig infected with Senecavirus A, enabling identification of virally-infected cell types via simultaneous detection of host cell type-specific proteins and virus-specific RNA. Findings have important applications for future in situ identification and comparative study of tissue landscapes and immunopathology in a diverse range of veterinary species.
期刊介绍:
The journal reports basic, comparative and clinical immunology as they pertain to the animal species designated here: livestock, poultry, and fish species that are major food animals and companion animals such as cats, dogs, horses and camels, and wildlife species that act as reservoirs for food, companion or human infectious diseases, or as models for human disease.
Rodent models of infectious diseases that are of importance in the animal species indicated above,when the disease requires a level of containment that is not readily available for larger animal experimentation (ABSL3), will be considered. Papers on rabbits, lizards, guinea pigs, badgers, armadillos, elephants, antelope, and buffalo will be reviewed if the research advances our fundamental understanding of immunology, or if they act as a reservoir of infectious disease for the primary animal species designated above, or for humans. Manuscripts employing other species will be reviewed if justified as fitting into the categories above.
The following topics are appropriate: biology of cells and mechanisms of the immune system, immunochemistry, immunodeficiencies, immunodiagnosis, immunogenetics, immunopathology, immunology of infectious disease and tumors, immunoprophylaxis including vaccine development and delivery, immunological aspects of pregnancy including passive immunity, autoimmuity, neuroimmunology, and transplanatation immunology. Manuscripts that describe new genes and development of tools such as monoclonal antibodies are also of interest when part of a larger biological study. Studies employing extracts or constituents (plant extracts, feed additives or microbiome) must be sufficiently defined to be reproduced in other laboratories and also provide evidence for possible mechanisms and not simply show an effect on the immune system.